用户名: 密码: 验证码:
我国公共建筑中吊顶的震害特征及其易损性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:SEISMIC DAMAGE CHARACTERISTICS AND FRAGILITY OF SUSPENDED CEILINGS IN CHINESE PUBLIC BUILDINGS
  • 作者:李戚齐 ; 曲哲 ; 解全才 ; 王多智
  • 英文作者:LI Qi-qi;QU Zhe;XIE Quan-cai;WANG Duo-zhi;Key Laboratory of Earthquake Engineering and Engineering Vibration,Institute of Engineering Mechanics,China Earthquake Administration;
  • 关键词:震害调查 ; 吊顶 ; 坠板率 ; 楼面峰值加速度 ; 易损性曲线
  • 英文关键词:earthquake reconnaissance;;suspended ceiling;;tile falling ratio;;peak floor acceleration;;fragility curve
  • 中文刊名:GCLX
  • 英文刊名:Engineering Mechanics
  • 机构:中国地震局工程力学研究所中国地震局地震工程与工程振动重点试验室;
  • 出版日期:2019-07-11
  • 出版单位:工程力学
  • 年:2019
  • 期:v.36
  • 基金:中国地震局工程力学研究所基本科研业务费专项项目(2016A05);; 国家自然科学基金面上项目(51878629)
  • 语种:中文;
  • 页:GCLX201907024
  • 页数:9
  • CN:07
  • ISSN:11-2595/O3
  • 分类号:217-225
摘要
地震中建筑物内吊顶的破坏主要表现为吊顶板、灯具等构件的坠落。其不但会造成经济损失,而且会严重影响建筑物在震后的正常使用,阻碍建筑物功能的快速恢复。该文以在2013年7.0级芦山地震中获得的我国实际吊顶的震害资料为基础,分析我国公共建筑中吊顶的震害特征。结合震害数据,以吊顶的坠板率作为衡量其损伤状态的指标,以楼面峰值加速度为工程需求参量,初步建立了我国吊顶在"快速恢复"和"难以恢复"2个损伤状态下的易损性曲线,并与国外已有的关于吊顶的易损性曲线进行了比较。结果表明:我国公共建筑吊顶的抗震能力相对较弱,边角部位尤其易于破坏;当楼面峰值加速度约为1.1 g时,吊顶即有50%的概率达到或超越"难以恢复"状态。
        The suspended ceilings in buildings are vulnerable to the falling of components such as ceiling tiles and light fixtures in earthquakes. These may lead to economic loss and hamper the quick recovery of the occupancy of buildings after earthquake. Based on the field investigation data on suspended ceilings due to Lushan earthquake of M7.0 in 2013, the seismic damage characteristics of the suspended ceilings in public buildings in China is investigated. The seismic fragility curves are established for suspended ceiling in China in terms of the tile falling ratio and peak floor acceleration under the ‘quick recover' and ‘hard to recover' damage states, and compared with the existing fragility curves in the literature for ceilings in the US. The results suggest that the suspended ceilings in China are more vulnerable than that in the US counterparts and the components near the corners and edges are easier to be damaged. The ceilings exhibited a 50% probability of exceeding the ‘hard to recover' damage state when the floor peak acceleration is approximately 1.1 g.
引文
[1]Wang D Z,Dai J W,Qu Z,et al.Shake table tests of suspended ceilings to simulate the observed damage in the Ms 7.0 Lushan earthquake,China[J].Earthquake Engineering and Engineering Vibration,2016,15(2):239―249.
    [2]Magliulo G,Pentangelo V,Maddaloni G,et al.Shake table tests for seismic assessment of suspended continuous ceilings[J].Bulletin of Earthquake Engineering,2012,10(6):1819―1832.
    [3]Miranda E,Mosqueda G,Retamales R,et al.Performance of nonstructural components during the 27February 2010 Chile earthquake[J].Earthquake Spectra,2012,28(Suppl 1):2354―2361.
    [4]Glasgow B,Gilani A S J,Miyamoto H K.Resilient suspended ceilings for sustainable design of buildings[C]//Structures Congress,2010:2575―2587.
    [5]Gilani A S J,Reinhorn A M,Glasgow B,et al.Earthquake simulator testing and seismic evaluation of suspended ceilings[J].Journal of Architectural Engineering,2010,16(2):63―73.
    [6]Badillo-Almaraz H,Whittaker A S,Reinhorn AM,et al.Seismic fragility of suspended ceiling systems[J].Earthquake Spectra,2007,23(1):21―40.
    [7]Echevarria A A,Zaghi A E,Soroushian S,et al.Seismic fragility of suspended ceiling systems[C]//Proceedings of the 15th World Conference on Earthquake Engineering.Lisbon,Portugal:WCEE,2012,CD-ROMPaper No.4325.
    [8]Ryu K.P.,Reinborn A.M.,Filiatrault A.,et al.Full scale dynamic testing of large area suspended ceiling system[C]//Proceedings of the 15th World Conference on Earthquake Engineering.Lisbon,Portugal:WCEE,2012,CD-ROM Paper No.5474.
    [9]Soroushian S,Rahmanishamsi E,Ryu K P,et al.Experimental fragility analysis of suspension ceiling systems[J].Earthquake Spectra,2016,32(2):881―908.
    [10]Soroushian S,Maragakis M,Jenkins C.Axial capacity evaluation of typical suspended ceiling joints[J].Earthquake Spectra,2016,32(1):547―565.
    [11]Gilani A S J,Takhirov S M,Tedesco L.Seismic Evaluation procedure for suspended ceilings and components new experimental approach[C]//Proceedings of the 15th World Conference on Earthquake Engineering.Lisbon,Portugal:WCEE,2012,CD-ROMPaper No.0326.
    [12]Yao G C.Seismic performance of direct hung suspended ceiling systems[J].Journal of Architectural Engineering,2000,6(1):6―11.
    [13]ANCO,Seismic hazard assessment of nonstructural ceiling components-Phase I[R].ANCO Engineering,Inc.Culver City,CA,1983.
    [14]Rihal S S,Granneman G.Experimental investigation of the dynamic behavior of building partitions and suspended ceilings during earthquake[C]//Proceedings of the 8th World Conference on Earthquake Engineering.San Francisco,CA:WCEE,1984,5:1135―1142.
    [15]Rihal SS,Granneman G.Experimental investigation of the dynamic behavior of building partitions and suspended ceilings during earthquake[R].USA:University of California Earthquake Enginering Research Center,1984.
    [16]Soroushian S,Ryan K L,Maragakis M,et al.NEES/E-Defense tests:seismic performance of ceiling/sprinkler piping nonstructural systems in base isolated and fixed base building[C]//Proceedings of the 15th World Conference on Earthquake Engineering.Lisbon,Portugal:WCEE,2012,CD-ROM Paper No.5101.
    [17]张鹏,芦燕.框架结构中吊顶的地震响应分析[C]//全国现代结构工程学术研讨会论文集,2014:1472―1478.Zhang Peng,Lu Yan.Seismic response analysis of suspended ceiling in frame structure[C]//National Conference of Modern Structural Engineering,2014:1472―1478.(in Chinese)
    [18]GB 50011―2010,建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.GB 50011―2010,Code of seismic design of buildings[S].Beijing:China Architecture&Building Press,2010.(in Chinese)
    [19]12J502-2,国家建筑标准设计图集《内装修-室内吊顶》[S].北京:中国计划出版社,2013.12J502-2,The national building standard design atlas“interior decoration-the ceiling of the room”[S].Beijing:China Planning Press,2013.(in Chinese)
    [20]ASCE/SEI 41-06,Seismic rehabilitation of existing buildings[S].American Society of Civil Engineers,Reston,VA,2006.
    [21]4.20芦山地震烈度图[EB].中国地震局,2013-04-25.Earthquake intensity map of‘4.20’Lushan earthquake in Sichuan[EB].China Earthquake Administration(CEA),2013-04-25.(in Chinese)
    [22]USGS,M6.6-56 km WSW of Linqiong,China[EB].https://earthquake.usgs.gov/earthquakes/eventpage/usb000gcdd#shakemap,2013-04-20.
    [23]Si H J,Midorikawa S.New attenuation relations for peak ground acceleration and velocity considering effects of fault type and site condition[C]//Proceedings of the 12th World Conference on Earthquake Engineering.Auckland,New Zealand:WCEE,2000,Paper No.0532.
    [24]ASCE7-10,Minimum design loads for buildings and other structures 7[S].Restonl,VA:American Society of Civil Engineers,2010.
    [25]BSSC NEHRP recommended provisions for seismic regulations for new buildings and other structures FEMA302/303 Part 1 and Part 2[R].Washington DC:Federal Emergency Management Agency,2010.
    [26]FEMA.Seismic performance assessment of buildings Volume 1-methodology[R].Washington DC:Federal Emergency Management Agency,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700