用户名: 密码: 验证码:
TPU无纺布对玻纤预制体渗透率和FRP层合板层间韧性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:EFFECT OF TPU NONWOVEN FABRIC ON PERMEABILITY FOR GLASS FIBER PREFORM AND TOUGHNESS PROPERTIES OF GF/EP COMPOSITES
  • 作者:张娜 ; 吕广超 ; 刘春太 ; 谈昆伦 ; 徐平 ; 黄明
  • 英文作者:ZHANG Na;LV Guang-chao;LIU Chun-tai;TAN Kun-lun;National Engineering Research Center for Advanced Polymer Processing Technology,Zhengzhou University;PGTEX China Co.,Ltd.,Changzhou;
  • 关键词:RTM ; 复合材料 ; 层间韧性 ; 渗透率 ; TPU ; 无纺布
  • 英文关键词:RTM;;composites;;interlaminar toughen;;permeability;;TPU;;nonwoven fabric
  • 中文刊名:BLGF
  • 英文刊名:Fiber Reinforced Plastics/Composites
  • 机构:郑州大学国家橡塑模具工程研究中心;常州市宏发纵横新材料科技股份有限公司;上海汽车集团股份有限公司技术中心;
  • 出版日期:2019-03-25
  • 出版单位:玻璃钢/复合材料
  • 年:2019
  • 期:No.302
  • 基金:国家重点研发计划(2016YFB0101602);; 中国博士后(2016M592305郑州大学力学与工程科学学院博士后);; 河南省项目(16A430010)
  • 语种:中文;
  • 页:BLGF201903004
  • 页数:6
  • CN:03
  • ISSN:11-2168/TU
  • 分类号:7-12
摘要
将熔喷成型的热塑性聚氨酯(TPU)无纺布(TNF)作为复合材料结构化的增韧层,采用真空树脂传递模塑(VARTM)工艺制备无纺布/玻璃纤维/环氧(TNF/GF/EP)复合材料,研究了其层间断裂韧性以及增韧机制,并对无纺布引入前后的玻璃纤维织物预浸体的渗透率进行了测量。结果表明:TNF增韧后的复合材料层间断裂韧性得到提高,Ⅰ型能量释放率GⅠC由790J/m~2增加到1411 J/m~2,提高了78%,Ⅱ型能量释放率GⅡC由569. 9 J/m~2增加到1223. 8 J/m~2,提高了115%,均表现出明显的增韧效果;同时,TNF的引入使得复合材料预制体体系的渗透率下降了56. 5%。
        In this study,the thermoplastic polyurethane nonwoven fabric( TNF) was chosen as structural toughening layer to improve the composite toughening,and the composites were fabricated by vacuum-assisted resin transfer molding( VARTM) technique. The toughening properties of the composites were investigated as well as permeability. Toughening of GF/EP composites was achieved by interleaving TNF. It provided the best all-round performance with fracture toughness improvements of 78% and 115% for mode-Ⅰ and mode-Ⅱ,respectively. At the same time,the permeability of TNF/GF/EP composites was decreased by 56. 5%.
引文
[1]Xu H,Tong X,Zhang Y,et al. Mechanical and electrical properties of laminated composites containing continuous carbon nanotube film interleaves[J]. Composites Science and Technology,2016,127:113-118.
    [2]Almuhammadi K,Alfano M,Yang Y,et al. Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi-walled carbon nanotubes[J]. Materials&Design,2014,53(1):921-927.
    [3]Khan S U,Kim J K. Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers[J]. Carbon,2012,50(14):5265-5277.
    [4]周磊,黎大胜,侯锐钢.铺层结构对树脂基复合材料层间剪切强度影响的研究[J].玻璃钢/复合材料,2016(9):44-48.
    [5]Jiang J,Yao X,Xu C,et al. Preparation of graphene oxide coatings onto carbon fibers by electrophoretic deposition for enhancing interfacial strength in carbon fiber composites[J]. Journal of the Electrochemical Society,2016,163(5):D133-D139.
    [6] Kostopoulos V,Kotrotsos A,Tsantzalis S,et al. Toughening and healing of continuous fibre reinforced composites by supramolecular polymers[J]. Composites Science&Technology,2016,128:84-93.
    [7]张晓霞,戚海东,王芳,等.风电叶片复合材料层间剪切破坏声发射监测[J].工程塑料应用,2012,40(8):77-80.
    [8]Borooj M B,Shoushtari A M,Haji A,et al. Optimization of plasma treatment variables for the improvement of carbon fibres/epoxy composite performance by response surface methodology[J]. Composites Science&Technology,2016,128:215-221.
    [9]Zhou G,Movva S,Lee L J. Preparation and properties of nanoparticle and long-fiber-reinforced unsaturated polyester composites[J].Polymer Composites,2009,30(7):861-865.
    [10]Mekic S,Akhatov I S,Ulven C A. Analysis of a radial infusion model for in-plane permeability measurements of fiber reinforcement in composite materials[J]. Polymer Composites,2010,30(12):1788-1799.
    [11]Nguyen V H,Lagardere M,Park C H,et al. Permeability of natural fiber reinforcement for liquid composite molding processes[J].Journal of Materials Science,2014,49(18):6449-6458.
    [12]Pan R,Liang Z,Zhang C,et al. Statistical characterization of fiber permeability for composite manufacturing[J]. Polymer Composites,2000,21(6):996-1006.
    [13]魏浩,朱凌,王继辉.添加表面毡对复合材料层间增韧的影响[J].玻璃钢/复合材料,2015(10):48-52.
    [14] Matsuda S,Hojo M,Murakami A,et al. ModeⅡinterlaminar fracture toughness of ionomer interleaved carbon fiber/epoxy laminates[J]. Journal of the Adhesion Society of Japan,2000,36(2):45-52.
    [15]Beckermann G W,Pickering K L. Mode-I and Mode-Ⅱinterlaminar fracture toughness of composite laminates interleaved with electrospun nanofibre veils[J]. Composites Part A:Applied Science and Manufacturing,2015,72:11-21.
    [16]沈跃风,胡美群.纤维复合材料的无纺布层间增韧性研究[J].化工设计通讯,2017,43(8):68-69.
    [17]Pegoretti A,Cristelli I,Migliaresi C. Experimental optimization of the impact energy absorption of epoxy-carbon laminates through controlled delamination[J]. Composites Science and Technology,2008,68(13):2653-2662.
    [18]张朋,刘刚,胡晓兰,等.结构化增韧层增韧RTM复合材料性能[J].复合材料学报,2012,29(4):1-9.
    [19]Kuwata M,Hogg P J. Interlaminar toughness of interleaved CFRP using non-woven veils:Part 2. Mode-Ⅱtesting[J]. Composites Part A:Applied Science and Manufacturing,2011,42(10):1551-1559.
    [20]Guo M,Yi X,Liu G,et al. Simultaneously increasing the electrical conductivity and fracture toughness of carbon-fiber composites by using silver nanowires-loaded interleaves[J]. Composites Science and Technology,2014,97:27-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700