用户名: 密码: 验证码:
轧制复合制备TA1/AZ31B/TA1层状复合材料组织与性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on microstructure and properties of TA1/AZ31B/TA1 laminated composites produced by roll bonding
  • 作者:王秋雨 ; 张兵 ; 赵田丽 ; 张志娟 ; 张东 ; 王文 ; 蔡军
  • 英文作者:WANG Qiu-yu;ZHANG Bing;ZHAO Tian-li;ZHANG Zhi-juan;ZHANG Dong;WANG Wen;CAI Jun;College of Metallurgy Engineering,Xi'an University of Architecture and Technology;National & Local Engineering Researching Center for Functional Materials Processing;State Key Laboratory of Nickel and Cobalt Resource integrated utilization,Jinchuan Group Co., Ltd.;
  • 关键词:TA1/AZ31B/TA1复合材料 ; 界面结构 ; 显微组织 ; 力学性能 ; 断口形貌
  • 英文关键词:ta1/az31b/ta1 laminated composite;;interface structure;;microstructure;;mechanical properties;;fracture morphology
  • 中文刊名:ZXJX
  • 英文刊名:Heavy Machinery
  • 机构:西安建筑科技大学冶金工程学院;功能材料加工国家地方联合工程研究中心;金川集团有限公司镍钴资源综合利用国家重点实验室;
  • 出版日期:2019-05-20
  • 出版单位:重型机械
  • 年:2019
  • 期:No.349
  • 基金:国家自然科学基金资助(51541404);; 镍钴资源综合利用国家重点实验室开放课题(301170504);; 西安建筑科技大学基础研究基金项目(JC1507)
  • 语种:中文;
  • 页:ZXJX201903005
  • 页数:7
  • CN:03
  • ISSN:61-1113/TH
  • 分类号:26-32
摘要
本文通过轧制复合法制备了TA1/AZ31B/TA1层状复合材料,利用光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)和电液压伺服疲劳试验机等测试方法分析研究了复合材料的界面、显微组织、应力-应变曲线及拉伸断口形貌。结果表明:轧制复合后,其结合界面呈波浪状,且在TA1层次表面有裂纹出现;经5道次轧制后,AZ31B挤入裂缝中,TA1侧表面层镶嵌在AZ31B基体中,并发生断裂并破碎,界面结合具有机械啮合特性。在轧制复合首道次后,TA1层组织变化不明显,AZ31B层组织明显细化,分布极不均,且发生了动态回复与再结晶;轧制5道次后,TA1层组织沿轧制方向呈流线型纤维组织,AZ31B层组织呈细小的等轴晶,分布均匀;当拉伸速率为1mm/min时,TA1/AZ31B/TA1层状复合材料抗拉强度达到最大值359.469 MPa,比准静态(0.01mm/min)增加了30 MPa,提高了9.09%,但延伸率降低了8.471%,表明TA1/AZ31B/TA1层状复合材料是一种正应变速率敏感材料。
        In the present studying, the interface, microstructure, and properties of TA1/AZ31 B/TA1 laminated composite produced by roll bonding and investigated by optical microscopy(OM), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and electrohydraulic servo fatigue testing machine. The results showed that the shape of bonding interface structure was wavy after the first roll bonding, and there were a few cracks on the subsurface of TA1 side. After 5 passes of rolling, AZ31 B was pushed into the crack, and the surface layer of TA1 side was embedded in AZ31 B matrix, and then was fractured. So the bonding interface has mechanical meshing characteristics. After the first roll bonding, the microstructure of TA1 layer had little changed, while that of AZ31 B layer was obviously refined with the extremely inhomogeneous distribution, and occurred dynamic recovery and recrystallization at the same time. After 5 passes of rolling, the microstructure of TA1 layer was streamlined along the rolling direction, and the microstructure of AZ31 B layer was fine equiaxed crystal with uniform distribution. When the tensile rate was 1.0 mm/min, the tensile strength of TA1/AZ31 B/TA1 laminated composite reached a maximum value of 359.469 MPa, which was 30 MPa higher than that of the quasi-static(0.01 mm/min) and increased by 9.09%, while the elongation decreased by 8.471%. The results show that TA1/AZ31 B/TA1 laminated composite is a positive strain rate sensitive material.
引文
[1] Altmtas,Y.,Aks?z,S.,Keslioǒlu,K.,Maral1,N.,2015.Determination of thermodynamic properties of aluminum based binary and ternary alloys[J].Alloys Compd.649,(07):453-460.
    [2] Auwal S T ,Ramesh S ,Yusof F ,et al.A review on laser beam welding of titanium alloys[J].The International Journal of Advanced Manufacturing Technology,2018,(09).
    [3] Ru M A ,Yue L U ,Wang L ,et al.Influence of rolling route on microstructure and mechanical properties of AZ31 magnesium alloy during asymmetric reduction rolling[J].Transactions of Nonferrous Metals Society of China,2018,28(05):902-911.
    [4] Catorceno L L C ,Abreu H F G D ,Padilha A F .Effects of cold and warm cross-rolling on microstructure and texture evolution of AZ31B magnesium alloy sheet[J].Journal of Magnesium & Alloys,2018,(04).
    [5] Videira H,Anes V,Freitas M,et al.Characterization and evaluation of the mechanical behaviour of the magnesium alloy AZ31B in multiaxial fatigue in the presence of a notch[J].Procedia Structural Integrity,2016,(01):197-204.
    [6] Esmaily M,Mortazavi N,Svensson JE,Halvarsson M,Wessén M,Johansson LG,Jarfors AEW.A new semi-solid casting technique for fabricating SiC-reinforcedMg alloys matrix composites[M].Compos Part B Eng 2016;94:176-89.
    [7] Shokrani A,Dhokia V,Newmann ST.Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids[M].Int J Mach Tool Manuf 2012;57:83-101.
    [8] Yu HL Lu C,Tieu AK,Li HJ,Godbole A,Kong C.Annealing effect on microstruc-ture and mechanical properties of Al/Ti/Al laminate sheets.Mater Sci Eng A2016,660 (04):195-204.
    [9] Huang GQ,Shen YF.The effects of processing environments on the microstruc-ture and mechanical properties of the Ti/5083Al composites produced by friction stir processing.J Manuf Process 2017,30(10):361-373.
    [10] Boyer RR.An overview on the use of titanium in the aerospace industry.Mater Sci Eng A 1996,213(01-02).
    [11] Ru M A ,Yue L U ,Wang L ,et al.Influence of rolling route on microstructure and mechanical properties of AZ31 magnesium alloy during asymmetric reduction rolling[J].Transactions of Nonferrous Metals Society of China,2018,28(05):902-911.
    [12] Catorceno L L C ,Abreu H F G D ,Padilha A F .Effects of cold and warm cross-rolling on microstructure and texture evolution of AZ31B magnesium alloy sheet[J].Journal of Magnesium & Alloys,2018,(04).
    [13] Videira H,Anes V,Freitas M,et al.Characterization and evaluation of the mechanical behaviour of the magnesium alloy AZ31B in multiaxial fatigue in the presence of a notch[J].Procedia Structural Integrity,2016,(01):197-204.
    [14] Guo L L ,Fujita F .Effect of deformation mode,dynamic recrystallization and twinning on rolling texture evolution of AZ31 magnesium alloys[J].中国有色金属学报(英文版),2018,(06).
    [15] Tan CW,Chen B,Meng SH,Zhang KP,Song XG,Zhou L,Feng JC.Microstructure and mechanical properties of laser welded-brazed AZ31/TA1 joints with AZ91Mg based filler[J].Mater Des 2016,99:127-34.
    [16] Zhang Z ,Tan C ,Zhao X ,et al.Influence of Cu coating thickness on interfacial reactions in laser welding-brazing of Mg to Ti[J].Journal of Materials Processing Technology,2018,261(06):61-73.
    [17] Tan C,Yang J,Zhao X,et al.Influence of Ni coating on interfacial reactions and mechanical properties in laser welding-brazing of Mg/Ti butted joint[J].Journal of Alloys & Compounds,2018,(06).
    [18] Zang C ,Liu J ,Tan C ,et al.Laser conduction welding characteristics of dissimilar metals Mg/Ti with Al interlayer[J].Journal of Manufacturing Processes,2018,32(03):595-605.
    [19] Baqer Y M ,Ramesh S ,Yusof F ,et al.Challenges and advances in laser welding of dissimilar light alloys:Al/Mg,Al/Ti,and Mg/Ti alloys[J].International Journal of Advanced Manufacturing Technology,2018(05):1-17.
    [20] Wu JQ,Wang WX,Cao XQ,Zhang N.Interface bonding mechanism and mechan-ical behavior of AZ31B/TA2 composite plate cladded by explosive welding[J].RareMet Mater Eng 2017;46(03):640-5.
    [21] Qi Z ,Yu C ,Xiao H .Microstructure and bonding properties of magnesium alloy AZ31/CP-Ti clad plates fabricated by rolling bonding[J].Journal of Manufacturing Processes,2018,32(02):175-186.
    [22] A.H.Monazzah,R.Bagheri,S.M.S.Reihani,Mater.Sci.Eng.A-Struct.558(2012) 82-89.
    [23] Cohades A ,Mortensen A .Tensile elongation of unidirectional or laminated composites combining a brittle reinforcement with a ductile strain and strain-rate hardening matrix[J].Acta Materialia,2014,71(02):31-43.
    [24] Zhang J Y ,Zhang P ,Zhang X ,et al.Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers[J].Materials Science & Engineering A (Structural Materials:Properties,Microstructure and Processing),2012,545(03):118-122.
    [25] Fitoussi J ,Bocquet M ,Meraghni F .Effect of the matrix behavior on the damage of ethylene-propylene glass fiber reinforced composite subjected to high strain rate tension[J].Composites Part B Engineering,2013,45(01):1181-1191.
    [26] 董晓萌,任学平,王耀奇,等.叠轧Ti/Al复合板结构与力学性能研究[J].稀有金属,2017,41(11):1208-1213.
    [27] Li X B ,Zu G Y ,Wang P .High strain rate tensile performance and microstructural evolution of Al/Cu laminated composite under dynamic loading[J].Materials Science & Engineering A,2014,612(33):89-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700