用户名: 密码: 验证码:
偏转工况下吊舱推进器的水动力和空泡性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrodynamic and cavitation performance of podded propulsor under steering conditions
  • 作者:李善成 ; 熊鹰 ; 王展
  • 英文作者:Li Shancheng;Xiong Ying;Wang Zhanzhi;College of Naval Architecture and Ocean Engineering,Naval University of Engineering;
  • 关键词:吊舱推进器 ; 偏转工况 ; 水动力性能 ; 空泡性能 ; 桨叶载荷
  • 英文关键词:podded propulsion;;steering condition;;hydrodynamic performance;;cavitation performance;;blade load
  • 中文刊名:JCZG
  • 英文刊名:Chinese Journal of Ship Research
  • 机构:海军工程大学舰船与海洋学院;
  • 出版日期:2019-01-18 08:37
  • 出版单位:中国舰船研究
  • 年:2019
  • 期:v.14;No.78
  • 基金:国家自然科学基金资助项目(51479207);; 上海交通大学海洋工程国家重点实验室研究基金资助项目(1514)
  • 语种:中文;
  • 页:JCZG201901005
  • 页数:10
  • CN:01
  • ISSN:42-1755/TJ
  • 分类号:35-44
摘要
[目的]吊舱推进器与螺旋桨之间干扰强烈,流动现象复杂。在操舵工况下远离设计点条件工作时,桨叶载荷会出现剧烈变化,且空泡性能也将同步恶化。为了分析吊舱推进器在偏转工况下的水动力和空泡性能,[方法]首先,采用全结构网格,基于雷诺平均(RANS)数值模拟方法对吊舱推进器的水动力性能开展研究;然后,采用Sauer模型预报吊舱推进器偏转工况下的空泡性能;最后,在空泡水筒中开展吊舱推进器的模型实验。[结果]结果表明:数值计算结果与实验结果的吻合度较高,验证了数值预报方法的准确性;偏转工况下,吊舱桨的推力和扭矩均高于直航工况;吊舱偏转后,随着周向角的变化,不同周向位置的压力将呈脉动变化趋势;桨叶的空泡形态存在差异性,且随吊舱偏转角度的增加而恶化。[结论]研究成果可以为吊舱推进器设计提供参考。
        [Objectives] The interaction between the body of pod propulsor and the propeller is great,leading to complex flow phenomena. As a consequence, under steering condition which is away from design point, loads of blades change sharply and the cavity characteristics deteriorate. In order to analyze the hydrodynamic characteristics of the pod propulsor, [Methods] the full structural grid based on the Reynolds Averaged Navier-Stokes(RANS) approach is adopted. Besides, the cavity structures are predicted by the Sauer model. Finally, the model experiment of the pod propeller is carried out in the cavity channel. [Results] The results show that the numerical data are in great agreement with the experiment counterparts which presents the correspondingly high accuracy of this numerical model. Under steering condition, the thrust and torque of pod propulsor are greater than the counterparts under straight condition. After the propulsor deflects, the pressure at different circumferential positions fluctuates with the change of circumferential angle. What's morecavity contours show different structures and the cavitation intensifies as the deflection angle rises. [ Conclusions] The research results can provide reference for the design of pod propeller.
引文
[1]王志华.吊舱式电力推进装置[J].船电技术,1999(4):30-32,37.Wang Z H.Podded electric propulsion system[J].Marine Electric&Electronic Engineering,1999(4):30-32,37(in Chinese).
    [2]Islam M F,Veitch B,Akinturk A,et al.Experiments with podded propulsors in static azimuthing conditions[C]//Proceedings of the 8th Canadian Marine Hydromechanics and Structures Conference.St Jone's,NL,Canada:NRC Institute for Ocean Technology,2007.
    [3]郭春雨.吊舱推进器直航以及非设计工况下水动力性能研究[D].上海:上海交通大学,2009.Guo C Y.The performance of podded propulsor in straight forward motion and at helm angles[D].Shanghai:Shanghai Jiaotong University,2009(in Chinese).
    [4]杨晨俊,钱正芳,马骋.吊舱对螺旋桨水动力性能的影响[J].上海交通大学学报,2003,37(8):1229-1233.Yang C J,Qian Z F,Ma C.Influences of pod on the propeller performance[J].Journal of Shanghai Jiaotong University,2003,37(8):1229-1233(in Chinese).
    [5]Szantyr J A.Hydrodynamic model experiments with pod propulsor[J].Oceanic Engineering International,2001,5(2):95-103.
    [6]Liu P F,Islam M,Veitch B.Unsteady hydromechanics of a steering podded propeller unit[J].Ocean Engineering,2009,36(12/13):1003-1014.
    [7]Amini H,Sileo L,Steen S.Numerical calculations of propeller shaft loads on azimuth propulsors in oblique inflow[J].Journal of Marine Science and Technology,2012,17(4):403-421.
    [8]熊鹰,盛立,杨勇.吊舱式推进器偏转工况下水动力性能[J].上海交通大学学报,2013,47(6):956-961.Xiong Y,Sheng L,Yang Y.Hydrodynamics performance of podded propulsion at declination angles[J].Journal of Shanghai Jiaotong University,2013,47(6):956-961(in Chinese).
    [9]王展智,熊鹰,孙海涛,等.直航和回转工况下吊舱推进器水动力性能数值计算方法研究[J].推进技术,2016,37(3):593-600.Wang Z Z,Xiong Y,Sun H T,et al.Numerical study on hydrodynamic performance of podded propulsor in straight forward and steering conditions[J].Journal of Propulsion Technology,2016,37(3):593-600(in Chinese).
    [10]沈兴荣,范佘明,蔡跃进,等.小舵角工况下吊舱推进器空泡性能实验研究[J].中国造船,2012,53(1):1-8.Shen X R,Fan S M,Cai Y J,et al.Experimental investigation on cavitation performance of podded propulsor under small helm-angle condition[J].Shipbuilding of China,2012,53(1):1-8(in Chinese).
    [11]Friesch J.Cavitation and vibration investigations for4214podded drives[C]//Proceedings of the first International Conference on Technological Advances in Podded Propulsion.Newcastle,UK:University of Newcastle,2004:387-399.
    [12]杨晨俊.第25届ITTC吊舱推进专家委员会工作介绍[C]//2008年船舶水动力学学术会议暨中国船舶学术界进入ITTC 30周年纪念会论文集.杭州:中国造船工程学会,2008:365-368.Yang C J.Work introduction of the 25th ITTC pod propulsion expert committee[C]//Proceedings of the2008 Conference on Ship Hydrodynamics and the Chinese Shipping Academia entered the ITTC 30th Anniversary.Hangzhou:Chinese Society of Naval Architects and Marine Engineer,2008:365-368(in Chinese).
    [13]Menter F R.Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA Journal,1994,32(8):1598-1605.
    [14]常欣,梁宁,王超,等.斜流中螺旋桨非定常水动力性能的数值分析[J].哈尔滨工程大学学报,2017,38(3):1048-1054.Chang X,Liang N,Wang C,et al.Numerical analysis of unsteady hydrodynamic performance of propeller in oblique flow[J].Journal of Harbin Engineering University,2017,38(3):1048-1055(in Chinese).
    [15]Dubbioso G,Muscari R,Mascio D A.Analysis of the performances of a marine propeller operating in oblique flow[J].Computers&Fluids,2013,75:86-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700