用户名: 密码: 验证码:
复杂地形条件下根系对土壤有机碳的贡献
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Contribution of Root Biomass to Soil Organic Carbon Under Complex Landforms Conditions
  • 作者:张彦军 ; 郭胜利
  • 英文作者:ZHANG Yan-jun;GUO Sheng-li;State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,Institute of Soil and Water Conservation,Northwest A&F University;Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation,College of Geography and Environment Engineering,Baoji University of Arts and Sciences;
  • 关键词:土壤有机碳 ; 地貌类型 ; 植被措施 ; 根系-碳转化效率 ; 黄土高原
  • 英文关键词:soil organic carbon;;landforms;;vegetation types;;root-carbon conversion efficiency;;Loess Plateau
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:西北农林科技大学水土保持研究所;宝鸡文理学院地理与环境学院陕西省灾害监测与机理模拟重点实验;
  • 出版日期:2017-12-01 16:41
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(41801069,41601016);; 陕西省科技厅项目(2018JQ3023);; 宝鸡文理学院博士科研启动费项目(ZK2017041)
  • 语种:中文;
  • 页:HJKZ201902057
  • 页数:9
  • CN:02
  • ISSN:11-1895/X
  • 分类号:451-459
摘要
在地形条件复杂的地区,量化根系对土壤有机碳的贡献对科学评价水土流失区的土壤碳储量具有重要意义.本研究在黄土高原丘陵沟壑区的砖窑沟小流域内,基于地貌类型(梁峁坡、沟坡和沟谷)和植被措施(农田、林地和草地措施)两大因素采集土壤和根系样品,在流域尺度上研究根系密度(FRD)对土壤有机碳密度(SOCD)的贡献.在砖窑沟小流域内,地形、植被措施和土层厚度及其交互作用显著影响SOCD和FRD的空间分布. SOCD和FRD在不同地形部位下均呈现出沟谷>沟坡>梁峁坡的趋势,在不同植被措施下均呈现出林地措施>草地措施>农田措施的趋势,在不同土层厚度上均呈现出表层(0~20 cm)大于下层(20~100 cm)的趋势.此外,FRD对SOCD的影响显著(P <0. 05),SOCD随着FRD增加呈现出对数增加的趋势,且不同地形和植被措施下的根系-碳转化效率差异显著(P <0. 05).在农田措施下,沟谷(0. 87)的根系-碳转化效率均是沟坡(0. 43)和梁峁坡(0. 43)的2. 0倍;在草地措施下,沟坡(0. 57)的根系-碳转化效率分别是沟谷(0. 45)和梁峁坡(0. 27)的1. 3倍和2. 1倍;在林地措施下,梁峁坡(0. 56)的根系-碳转化效率是沟坡(0. 44)的1. 3倍.因此,在砖窑沟小流域内,从增加根系-碳转化效率的角度而言,沟谷适合进行农业生产,沟坡适宜进行退耕还草,而梁峁坡适合进行退耕还林.
        Quantifying the contribution of fine root density( FRD) to soil organic carbon density( SOCD) under extremely complex landforms is of great significance for the evaluation of carbon storage at an eroded small catchment in hilly regions of the Loess Plateau.Soil and root samples were collected from typical landforms( a ridge slope,gully slope,and valley bottom) and different vegetation types( cropland,grassland,and woodland) to investigate the contribution of FRD to SOCD at the Zhuan Yaogou watershed The spatial distribution of SOCD and FRD was influenced significantly by landforms,vegetation type,soil depth,or their interactions. SOCD and FRD tended to go in the following order: valley bottom > gully slope > ridge slope on different landforms,Woodland > grassland >cropland on different types of vegetation,and surface > lower depths at different soil depths. Additionally,FRD had a significant effect on SOCD( P < 0. 05),SOCD increased logarithmically with FRD,and there was a significant difference in root-carbon conversion efficiency between different landforms and types of vegetation( P < 0. 05). The root-carbon conversion efficiency on the valley bottom( 0. 87) was 2. 0 times higher than those on ridge slopes( 0. 43) and gully slopes( 0. 43) on cropland; the root-carbon conversion efficiency on gully slopes( 0. 57) were 1. 3 and 2. 1 times greater than those in valley bottoms( 0. 45) and ridge slopes( 0. 27),respectively,on grassland; and the root-carbon conversion efficiency on ridge slopes( 0. 56) was 1. 3 times greater than that on gully slopes( 0. 44). Therefore,from the perspective of increasing root-carbon conversion efficiency at the Zhuan Yaogou watershed in the hilly region of the Loess Plateau,valley bottoms are suitable for agriculture,gully slopes are suitable for returning farmland to grassland,and ridge slopes are suitable for returning farmland to woodland.
引文
[1]唐克丽.黄土高原水蚀风蚀交错区治理的重要性与紧迫性[J].中国水土保持,2000,(11):11-12,17.Tang K L. Importance and urgency of harnessing the interlocked area with both water and wind erosion in the Loess Plateau[J].Soil and Water Conservation in China,2000,(11):11-12,17.
    [2] Lal R. Soil erosion and the global carbon budget[J].Environment International,2003,29(4):437-450.
    [3] Wang Z Q,Guo S L,Sun Q Q,et al. Soil organic carbon sequestration potential of artificial and natural vegetation in the hilly regions of Loess Plateau[J]. Ecological Engineering,2015,82:547-554.
    [4]张彦军,郭胜利,南雅芳,等.水土流失治理措施对小流域土壤有机碳和全氮的影响[J].生态学报,2012,32(18):5777-5785.Zhang Y J,Guo S L,Nan Y F,et al. Effects of soil erosion control measures on soil organic carbon and total nitrogen in a small watershed[J]. Acta Ecologica Sinica,2012,32(18):5777-5785.
    [5] Lal R. Soil carbon sequestration to mitigate climate change[J].Geoderma,2004,123(1-2):1-22.
    [6] Pan G X,Smith P,Pan W N. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China[J]. Agriculture,Ecosystems&Environment,2009,129(1-3):344-348.
    [7] Dialynas Y G, Bastola S, Bras R L, et al. Topographic variability and the influence of soil erosion on the carbon cycle[J]. Global Biogeochemical Cycles,2016,30(5):644-660.
    [8] Griffiths R P,Madritch M D,Swanson A K. The effects of topography on forest soil characteristics in the Oregon Cascade Mountains(USA):implications for the effects of climate change on soil properties[J]. Forest Ecology and Management,2009,257(1):1-7.
    [9] Mc Nab W H. A topographic index to quantify the effect of mesoscale landform on site productivity[J]. Canadian Journal of Forest Research,1993,23(6):1100-1107.
    [10] Kobayashi Y,Koike F. Separating the effects of land-use history and topography on the distribution of woody plant populations in a traditional rural landscape in Japan[J]. Landscape and Urban Planning,2010,95(1-2):34-45.
    [11] Wang Y F,Fu B J,LüY H,et al. Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau,China[J]. CATENA,2011,85(1):58-66.
    [12] Wang Z,Liu G B,Xu M X,et al. Temporal and spatial variations in soil organic carbon sequestration following revegetation in the hilly Loess Plateau,China[J]. CATENA,2012,99:26-33.
    [13] Gong J,Chen L,Fu B,et al. Effect of land use on soil nutrients in the loess hilly area of the Loess Plateau,China[J]. Land Degradation&Development,2006,17(5):453-465.
    [14] Chaplot V,Bouahom B,Valentin C. Soil organic carbon stocks in Laos:spatial variations and controlling factors[J]. Global Change Biology,2010,16(4):1380-1393.
    [15] Fang X,Xue Z J,Li B C,et al. Soil organic carbon distribution in relation to land use and its storage in a small watershed of the Loess Plateau,China[J]. CATENA,2012,88(1):6-13.
    [16] Oueslati I,Allamano P,Bonifacio E,et al. Vegetation and topographic control on spatial variability of soil organic carbon[J]. Pedosphere,2013,23(1):48-58.
    [17] Deng L,Liu G B,Shangguan Z P. Land-use conversion and changing soil carbon stocks in China's ‘Grain-for-Green’Program:a synthesis[J]. Global Change Biology,2014,20(11):3544-3556.
    [18] Song X Z,Peng C H,Zhou G M,et al. Chinese Grain for Green Program led to highly increased soil organic carbon levels:a meta-analysis[J]. Scientific Reports,2014,4:4460.
    [19] Ktterer T,Bolinder M A,Andrén O,et al. Roots contribute more to refractory soil organic matter than above-ground crop residues,as revealed by a long-term field experiment[J].Agriculture,Ecosystems&Environment,2011,141(1-2):184-192.
    [20] Rasse D P,Rumpel C,Dignac M F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation[J]. Plant and Soil,2005,269(1-2):341-356.
    [21] De Graaff M A,Schadt C W,Rula K,et al. Elevated CO2and plant species diversity interact to slow root decomposition[J].Soil Biology and Biochemistry,2011,43(11):2347-2354.
    [22] Yuan Z Y,Chen H Y H. Fine root biomass, production,turnover rates,and nutrient contents in boreal forest ecosystems in relation to species,climate,fertility,and stand age:literature review and meta-analyses[J]. Critical Reviews in Plant Sciences,2010,29(4):204-221.
    [23] Hu Y L,Zeng D H,Ma X Q,et al. Root rather than leaf litter input drives soil carbon sequestration after afforestation on a marginal cropland[J]. Forest Ecology and Management,2016,362:38-45.
    [24] Wang Y,Ji H F,Wang R,et al. Impact of root diversity upon coupling between soil C and N accumulation and bacterial community dynamics and activity:result of a 30 year rotation experiment[J]. Geoderma,2017,292:87-95.
    [25]王彦丽.不同植被恢复措施下剖面根系与SOC的分布特征[J].水土保持研究,2013,20(6):19-23,43.Wang Y L. Profile distribution characteristics of root biomass and soil organic carbon under different vegetation restoration measures[J]. Research of Soil and Water Conservation,2013,20(6):19-23,43.
    [26]韩畅,宋敏,杜虎,等.广西不同林龄杉木、马尾松人工林根系生物量及碳储量特征[J].生态学报,2017,37(7):2282-2289.Han C,Song M,Du H,et al. Biomass and carbon storage in roots of Cunninghamia lanceolata and Pinus massoniana plantations at different stand ages in Guangxi[J]. Acta Ecologica Sinica,2017,37(7):2282-2289.
    [27]匡文浓,钱建强,马群,等.五种荒漠灌木群落土壤有机碳垂直分布及其与根系分布的关系[J].生态学杂志,2016,35(2):275-281.Kuang W N,Qian J Q,Ma Q,et al. Vertical distribution of soil organic carbon and its relation to root distribution in five desert shrub communities[J]. Chinese Journal of Ecology,2016,35(2):275-281.
    [28]罗永清,赵学勇,王涛,等.沙地植物根系特征及其与土壤有机碳和总氮的关系[J].草业学报,2017,26(8):200-206.Luo Y Q,Zhao X Y,Wang T,et al. Characteristics of the plantroot system and its relationships with soil organic carbon and total nitrogen in a degraded sandy grassland[J]. Acta Prataculturae Sinica,2017,26(8):200-206.
    [29]中国科学院水利部西北水土保持研究所.黄土高原综合治理试验示范区:专题地图集[M].北京:测绘出版社,1991.
    [30] Li Z,Jiang X,Pan X Z,et al. Organic carbon storage in soils of tropical and subtropical China[J]. Water, Air, and Soil Pollution,2001,129(1-4):45-60.
    [31] Zhang Y,Zhao Y C,Shi X Z,et al. Variation of soil organic carbon estimates in mountain regions:a case study from Southwest China[J]. Geoderma,2008,146(3-4):449-456.
    [32]于东升,史学正,孙维侠,等.基于1:100万土壤数据库的中国土壤有机碳密度及储量研究[J].应用生态学报,2005,16(12):2279-2283.Yu D S,Shi X Z,Sun W X,et al. Estimation of China soil organic carbon storage and density based on 1:1 000 000 soil database[J]. Chinese Journal of Applied Ecology,2005,16(12):2279-2283.
    [33] Liu Z P,Shao M A,Wang Y Q. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region,China[J]. Agriculture,Ecosystems&Environment,2011,142(3-4):184-194.
    [34] Li M M,Zhang X C,Pang G W,et al. The estimation of soil organic carbon distribution and storage in a small catchment area of the Loess Plateau[J]. CATENA,2013,101:11-16.
    [35] Zhu H H,Wu J S,Guo S L,et al. Land use and topographic position control soil organic C and N accumulation in eroded hilly watershed of the Loess Plateau[J]. CATENA,2014,120:64-72.
    [36]杜兰兰,王志齐,王蕊,等.模拟条件下侵蚀-沉积部位土壤CO2通量变化及其影响因素[J].环境科学,2016,37(9):3616-3624.Du L L,Wang Z Q,Wang R,et al. Variation of soil CO2flux and environmental factors across erosion-deposition sites under simulation experiment[J]. Environmental Science,2016,37(9):3616-3624.
    [37]李如剑,张彦军,赵慢,等.坡度和降雨影响土壤CO2通量和有机碳流失的模拟研究[J].环境科学学报,2016,36(4):1336-1342.Li R J,Zhang Y J,Zhao M,et al. Simulation on the effects of slope and rainfall on soil CO2flux and SOC loss[J]. Acta Scientiae Circumstantiae,2016,36(4):1336-1342.
    [38] Zhao X,Wu P,Gao X,et al. Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China[J]. Land Degradation&Development,2015,26(1):54-61.
    [39] Usman S,Singh S P,Rawat Y S,et al. Fine root decomposition and nitrogen mineralisation patterns in Quercus leucotrichophora and Pinus roxburghii forests in central Himalaya[J]. Forest Ecology and Management,2000,131(1-3):191-199.
    [40] Jobbágy E G,Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J].Ecological Applications,2000,10(2):423-436.
    [41] Wang Y G,Li Y,Ye X H,et al. Profile storage of organic/inorganic carbon in soil:from forest to desert[J]. Science of the Total Environment,2010,408(8):1925-1931.
    [42] Olupot G,Daniel H,Lockwood P,et al. Root contributions to long-term storage of soil organic carbon:theories,mechanisms and gaps[A]. In:Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World[C].Brisbane,Australia:DVD,2010. 112-115.
    [43] Dai X Q,Wang H M,Fu X L. Soil microbial community composition and its role in carbon mineralization in long-term fertilization paddy soils[J]. Science of the Total Environment,2017,580:556-563.
    [44]邹俊亮,郭胜利,李泽,等.小流域土壤有机碳的分布和积累及土壤水分的影响[J].自然资源学报,2012,27(3):430-439.Zou J L,Guo S L,Li Z,et al. Soil organic carbon accumulation and distribution in a small watershed and the effects of soil water[J]. Jounnal of Natural Resources,2012,27(3):430-439.
    [45] Khan F,Hayat Z,Ahmad W,et al. Effect of slope position on physico-chemical properties of eroded soil[J]. Soil&Environment,2013,32(1):22-28.
    [46] Hyv9nen T. Impact of temperature and germination time on the success of a C4weed in a C3crop:Amaranthus retroflexus and spring barley[J]. Agricultural and Food Science,2008,20(2):183-190.
    [47]南志标,王锁民,王彦荣,等.我国北方草地6种乡土植物抗逆机理与应用[J].科学通报,2016,61(2):239-249.Nan Z B,Wang S M, Wang Y R, et al. Stress tolerance mechanisms of 6 native plant species growing in China's northern grassland and their utilization[J]. Chinese Science Bulletin,2016,61(2):239-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700