用户名: 密码: 验证码:
纳米晶复合涂层应用于火星玻璃盖片防尘的探索
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Exploration for Nano-crystalline Composite Coatings in Dust-proof of Cover Glasses on Mars
  • 作者:徐阳 ; 齐振一 ; 王志浩 ; 田东波
  • 英文作者:XU Yang;QI Zhen-yi;WANG Zhi-hao;TIAN Dong-bo;Shanghai Institute of Ceramics, Chinese Academy of Sciences;Beijing Institute of Spacecraft Environment Engineering;
  • 关键词:纳米晶 ; 复合涂层 ; 接触面积 ; 增透 ; 超疏水 ; 粘附力 ; 除尘效率
  • 英文关键词:nano-crystalline;;composite coating;;contact area;;anti-reflection;;super-hydrophobic;;adhesion force;;efficiency of dust cleaning
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:中国科学院上海硅酸盐研究所;北京卫星环境工程研究所;
  • 出版日期:2019-05-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 语种:中文;
  • 页:BMJS201905026
  • 页数:6
  • CN:05
  • ISSN:50-1083/TG
  • 分类号:179-183+236
摘要
目的制备超微结构的纳米晶复合涂层,降低火星环境中灰尘颗粒在玻璃表面的粘附,并通过翻转操作,最大限度地清除沉积的灰尘,恢复太阳能电池的发电能力。方法采用水热法和表面修饰,制备了纳米晶复合防尘涂层。通过电子显微镜、分光光度计、接触角仪和翻转除尘试验分别对涂层的微观结构、可见-近红外光透过率、表面性质和除尘效率进行了分析。结果由直径大约为27nm的ZnO纳米棒构成的独特涂层结构,使灰尘颗粒与涂层表面的接触面积相比于普通玻璃减小了一个数量级,可见光区的透过率提高了1.1%,近红外区透过率提高了0.4%。用氟化物进行表面修饰后,涂层的水接触角由25°~45°升高至155°~165°。经90°缓慢翻转,纳米晶复合涂层对50~100μm和30~50μm灰尘颗粒的清除效率分别为80%~90%和60%~70%;而在相同测试条件下,普通玻璃的防尘效率仅为37.5%和6.3%。由翻转后涂层表面灰尘的分布情况和倾斜表面上单颗粒的受力分析发现,灰尘颗粒的脱落存在滑落和滚落两种模式,高位落下的颗粒将部分动能传递给低位静止的颗粒,促使更多静止颗粒的滑落或滚落,形成"雪崩"状的特殊形貌。结论 ZnO纳米晶复合涂层不仅可以提高可见光和近红外光的透过率,还可以极大地减小与灰尘颗粒的接触面积,降低颗粒的粘附力,在不使用高压电能的情况下,经过翻转操作,清除效率可达80%以上,这将为火星上灰尘的清除提供一种安全的方式。
        The work aims to prepare ultrastructure nano-crystalline composite coatings to decrease the dust adhesion on cover glasses and recover the power supply of solar cells by cleaning the deposited dust furthest through a flipping operation in Mars environment. The nano-structured dust proof coatings were fabricated by aqueous chemical growth method with three different reaction times and surface modification procedure. The microstructure, visible-near-infrared light transmittance, surface properties and dust removal efficiency of coatings were analyzed by electron microscope, spectrophotometer, contact angle meter and flipping dust removal test. The unique coating structure formed by ZnO nanorods with ~27 nm made the contact area of dust grains with the composite coating dramatically decrease by one magnitude, compared to bare glass. The transmittance increased by 1.1% in visible region and 0.4% in near IR region. The water contact angle changed from 25°~45° to 155°~165° after surface modification by fluorochamicals. Through a slow flipping for 90 degrees, pre-deposited dust on the nano-crystalline composite coatings was cleaned by 80%~90% for grains of 50~100 μm diameters and by 60%~70% for the ones of 30~50 μm.At the same test condition, the dust proof efficiencies of bare glass were only 37.5% and 6.3%. From the dust distributions on the flipped samples and the force diagram of an individual particle on a tilted plane further, the particle falling included two basic modes of slipping and rolling, and the kinetic energy of a falling particle transferred to one or more static particles at the lower position resulting in an "avalanche" morphology. ZnO nano-crystalline composite coatings can not only improve the transmittance of visible light and near infrared light, but also greatly reduce the contact area with dust particles and reduce the adhesion of particles. Under the condition of not using high-voltage electrical energy, the removal efficiency can reach more than 80% through flipping operation, which will provide a safe way for removing dust on Mars.
引文
[1]WILLIAMS B S.Dust mitigation for martian exploration[J].NASA usrp-intership final report,2011(0014552):1-7.
    [2]杨瑞琰,闫霏霏,黄定华,等.火星大气环流模型研究进展[J].地质科技情报,2008(1):31-34.YANG Rui-yan,YAN Fei-fei,HUANG Ding-hua,et al.Evolvement of mars atmospheric circulation model[J].Geological science and technology information,2008(1):31-34.
    [3]RICHARD P,THOMAS K.Mars surface solar arrays:Part 2 power performance[C]//Future in-space operations(FISO)working group.Cleveland,OH:NASA,2017:1-43.
    [4]LANDIS G A.Mars dust removal technology[C]//The thirty-second intersociety energy conversion engineering conference.Honolulu:IECEC,1997:764-767.
    [5]STELLA P M,HERMAN J A.The mars surface environment and solar array performance[C]//35th IEEEphotovoltaic specialists conference.Honolulu:IEEE,2010:2631-2635.
    [6]GAIER J R,PERAZ-DAVIS M E,RUTLEDGE S K,et al.Aeolian removal of dust from radiator surfaces on Mars[J].NASA technical memorandum,1990(103205):1-13.
    [7]GAIER J R,PERAZDAVIS M E,MARABITO M.Aeolian removal of dust types from photovoltaic surfaces on mars[J].NASA technical memorandum,1990(102507):1-17.
    [8]JOHANSEN M R,MACKEY P J,HOGUE M D,et al.History and flight development of the electrodynamic dust shield[C]//AIAA SPACE 2015 conference and exposition.Pasadena:AIAA,2015:4446.
    [9]ASHPIS D E.Dust removal from solar cells:United States,US9123845B2[P].2015-09-01.
    [10]袁亚飞,刘民,杨亦强.火星太阳电池翼除尘方法综述[J].航天器环境工程,2010,27(5):604-606.YUAN Ya-fei,LIU Min,YANG Yi-qiang.Dust removal techniques for mars solar arrays[J].Spacecraft environment engineering,2010,27(5):604-606.
    [11]袁亚飞,刘民,柏向春.电帘除尘技术的研究现状[J].航天器工程,2010,19(5):89-94.YUAN Ya-fei,LIU Min,BO Xiang-chun.Research of electrode screen as dust mitigation technology[J].Spacecraft engineering,2010,19(5):89-94.
    [12]ASHPIS D E.Dust removal from solar cells:United States,US007999173B1[P].2011-08-16.
    [13]史济群,周京英,马稚尧,等.电子束法沉积ITO透明导电膜的研究[J].华中科技大学学报(自然科学版),1998,26(3):10-12.SHI Ji-qun,ZHOU Jing-ying,MA Zhi-yao,et al.A study on transparent&electrically conducting film(ito)deposited by electron beam[J].Journal of Huazhong University of Science and Technology(natural science editon),1998,26(3):10-12.
    [14]刘治钢,王飞,陈燕,等.火星表面环境对太阳电池阵设计影响分析与对策[J].航天器工程,2016,25(2):39-45.LIU Zhi-gang,WANG Fei,CHEN Yan,et al.Impact analysis and solution of solar array design in martian surface environment[J].Spacecraft engineering,2016,25(2):39-45.
    [15]QIN Y,WANG X D,WANG Z L.Microfibre-nanowire hybrid structure for energy scavenging[J].Nature,2008,451(14):809-813.
    [16]李汶军.纳米晶粒水热制备过程中的粒度与形态调控[D].上海:中国科学院上海硅酸盐研究所,2001.LI Wen-jun.Modulation of size and morphology of nanocrystallites under hydrothermal conditions[D].Shanghai:Shanghai Institute of Ceramics,Chinese Academy of Sciences,2001.
    [17]占世平,高永毅.氧化锌纳米线阵列的可控合成与光学性能[J].湖南科技大学学报(自然科学版),2011,26(4):80-82.ZHAN Shi-ping,GAO Yong-yi.The controllable synthesis of ZnO nanowire-arrays and optical properties[J].Journal of Hunan University of Science&Technology(natural science editon),2011,26(4):80-82.
    [18]俞有幸,郝维昌,杜轶,等.氧化锌纳米棒有序阵列的制备及表征[J].功能材料,2007,38(8):1370-1372.YU You-xing,HAO Wei-chang,DU Yi,et al.Preparation and characterization of ZnO nanorods oriented arrays[J].Journal of functional materials,2007,38(8):1370-1372.
    [19]LI W J,SHI E W,ZHONG W Z,et al.Growth mechanism and growth habit of oxide crystals[J].Journal of crystal growth,1999,203(1):186-196.
    [20]TIAN Z R,VOIGT J A,LIU J,et al.Complex and oriented ZnO nanostructures[J].Nature materials,2003,2(12):821-826.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700