用户名: 密码: 验证码:
低变温高湿解冻对猪肉理化特性、蛋白热变性及流变特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Variable Low Temperature Combined with High-Humidity Thawing on Physicochemical Characteristics,Thermal Denaturation and Rheological Properties of Pork
  • 作者:朱明明 ; 彭泽宇 ; 赵贺开 ; 康壮丽 ; 赵圣明 ; 王正荣 ; 何鸿举 ; 马汉军
  • 英文作者:ZHU Mingming;PENG Zeyu;ZHAO Hekai;KANG Zhuangli;ZHAO Shengming;WANG Zhengrong;HE Hongju;MA Hanjun;School of Food Science and Technology, Henan Institute of Science and Technology;Henan Province Engineering Technology Research Center of Animal Products Intensive Processing and Quality Safety Control,Henan Institute of Science and Technology;
  • 关键词:低变温解冻 ; 相对湿度 ; 猪肉 ; 理化特性 ; 差示扫描量热仪 ; 流变特性
  • 英文关键词:viable low temperature thawing;;relative humidity;;pork;;physicochemical characteristics;;differential scanning calorimetry;;rheological properties
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:河南科技学院食品学院;河南科技学院畜禽产品精深加工与质量安全控制河南省工程技术研究中心;
  • 出版日期:2019-06-15
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.600
  • 基金:河南省重大科技专项(161100110600);; 河南科技学院高层次人才科研项目(2016020;2015015);; 河南省科技厅科技攻关项目(182102110404;192102110108)
  • 语种:中文;
  • 页:SPKX201911020
  • 页数:8
  • CN:11
  • ISSN:11-2206/TS
  • 分类号:139-146
摘要
本研究以鲜肉和传统低温(4℃,相对湿度(relative humidity,RH)65%~73%)肉为对照,探究低变温(2℃→6℃→2℃)下,不同相对湿度(80%、85%、90%、95%)解冻对猪肉品质的影响,分析不同处理对肉样解冻效率、保水性、色泽、嫩度、新鲜度等理化特性、蛋白热变性及流变特性的影响。结果表明:相较于传统低温解冻,低变温高湿度可有效提高解冻效率,显著改善猪肉的保水性、色泽、嫩度,显著降低脂肪氧化程度(P<0.05);其中RH 90%、RH 95%条件下解冻效率明显高于RH 80%、RH 85%两组,能有效改善解冻后猪肉的保水性、色泽、嫩度,降低脂肪氧化程度,提高蛋白溶解性,维持猪肉较好的凝胶结构,且猪肉蛋白变性程度显著较低(P<0.05);但RH 95%处理组解冻后猪肉的菌落总数(3.97(lg(CFU/g)))和挥发性盐基氮含量(1.40 mg/100 g)显著高于其他组;且环境湿度越大,能耗就越高。因此低变温RH 90%可作为合适的猪肉解冻条件。
        This study was conducted to analyze the effects of thawing at different relative humidity(RH 80%, 85%, 90%and 95%) and viable low temperature(2 ℃ → 6 ℃ → 2 ℃) on the quality characteristics of pork by using fresh pork and conventional low temperature thawing(4 ℃, RH 65%–73%) as the controls. The changes in thawing rate, physicochemical characteristics including water-holding capacity(WHC), color, tenderness and freshness, protein thermal denaturation and rheological properties were examined. The results showed that compared with conventional low temperature thawing,variable low temperature, high humidity thawing could improve the thawing efficiency(P < 0.05), maintain the WHC, color and tenderness of pork, and inhibit lipid oxidation significantly(P < 0.05). The thawing efficiency at RH of 90% and 95%was higher than at RH of 85% and 80%. In addition, viable low temperature thawing at RH of 90% and 95% allowed better maintenance of WHC, color and tenderness(close to fresh pork), reduced lipid oxidation and increased protein solubility.The degree of protein denaturation in the thawed pork at RH of 90% and 95% was significantly lower than at RH of 80%and 85%(P < 0.05) as measured by differential scanning calorimetry(DSC). Also, the thawing at RH of 90% and 95%maintained the G′ value better. However, total bacterial count(3.97(lg(CFU/g))) and TVB-N content(1.40 mg/100 g) in the thawed pork at 95% RH were significantly higher than other thawed samples. Moreover, greater humidity could require higher energy consumption. Therefore, variable low temperature combined with 90% relative humidity thawing was more suitable for frozen pork.
引文
[1]ZHOU G H,ZHANG W G,XU X L.China’s meat industry revolution:challenges and opportunities for the future[J].Meat Science,2012,92(3):188-196.DOI:10.1016/j.meatsci.2012.04.016.
    [2]章杰,彭新书,马丹,等.不同解冻方式对猪肉营养价值的影响[J].食品与发酵工业,2017,43(6):203-207.DOI:10.13995/j.cnki.11-1802/ts.201706034.
    [3]LEYGONIE C,BRRITZ T J,HOFFMAN L C.Impact of freezing and thawing on the quality of meat:review[J].Meat Science,2012,91(2):93-98.DOI:10.1016/j.meatsci.2012.01.013.
    [4]TAHER B J,FARID M M.Cyclic microwave thawing of frozen meat:experimental and theoretical investigation[J].Chemical Engineering and Processing,2001,40(4):379-389.DOI:10.1016/S0255-2701(01)00118-0.
    [5]EASTRIDGE J S,BOWKER B C.Effect of rapid thawing on the meat quality attributes of USDA select beef strip loin steaks[J].Journal of Food Science,2011,76(2):156-162.DOI:10.1111/j.1750-3841.2010.02037.x.
    [6]UYAR R,BEDANE T F,ERDOGDU F,et al.Radio-frequency thawing of food products:a computational study[J].Journal of Food Engineering,2015,146:163-171.DOI:10.1016/j.jfoodeng.2014.08.018.
    [7]LEYGONIE C,BRITZ T J,HOFFMAN L C.Meat quality comparison between fresh and frozen/thawed ostrich M.iliofibularis[J].Meat Science,2012,91(3):364-368.DOI:10.1016/j.meatsci.2012.02.020.
    [8]CHANDIRASEKARAN V,THULASI G.Effect of different thawing methods on physico-chemical characteristics of frozen buffalo meat[J].Journal of Food Technology,2010,8(6):239-242.DOI:10.3923/jftech.2010.239.242.
    [9]XIA Xiufang,KONG Baohua,LIU Jing,et al.Influence of different thawing methods on physicochemical changes and protein oxidation of porcine longissimus muscle[J].LWT-Food Science and Technology,2012,46(1):280-286.DOI:10.1016/j.lwt.2011.09.018.
    [10]ZHANG X,GAO T,SONG L,et al.Effects of different thawing methods on the quality of chicken breast[J].International Journal of Food Science and Technology,2017,52(9):2097-2105.DOI:10.1111/ijfs.13488.
    [11]MANIOS S G,SKANDAMIS P N.Effect of frozen storage,different thawing methods and cooking processes on the survival of Salmonella spp.and Escherichia coli O157:H7 in commercially shaped beef patties[J].Meat Science,2015,101:25-32.DOI:10.1016/j.meatsci.2014.10.031.
    [12]ICIER F,IZZETOGLU G T,BOZKURT H,et al.Effects of ohmic thawing on histological and textural properties of beef cuts[J].Journal of Food Engineering,2010,99(3):360-365.DOI:10.1016/j.jfoodeng.2010.03.018.
    [13]CHAKANYA C,ARNAUD E,MUCHENJE V,et al.Colour and oxidative stability of mince produced from fresh and frozen/thawed fallow deer(Dama dama)meat[J].Meat Science,2017,126:63-72.DOI:10.1016/j.meatsci.2016.12.008.
    [14]CHOI E J,PARK H W,CHUNG Y B,et al.Effect of tempering methods on quality changes of pork loin frozen by cryogenic immersion[J].Meat Science,2017,124:69-76.DOI:10.1016/j.meatsci.2016.11.003.
    [15]张春晖,李侠,李银,等.低温高湿变温解冻提高羊肉的品质[J].农业工程学报,2013,29(6):267-273.DOI:10.3969/j.issn.1002-6819.2013.06.033.
    [16]LI Yin,JIA Wei,ZHANG Chunhui,et al.Fluctuated low temperature combined with high-humidity thawing to reduce physicochemical quality deterioration of beef[J].Food and Bioprocess Technology,2014,7(12):3370-3380.DOI:10.1007/s11947-014-1337-3.
    [17]张昕,高天,宋蕾,等.低温解冻相对湿度对鸡胸肉品质的影响[J].食品科学,2016,37(20):241-246.DOI:10.7506/spkx1002-6630-201620041.
    [18]UTRERA M,MORCUENDE D,ESTEVEZ M.Temperature of frozen storage affects the nature and consequences of protein oxidation in beef patties[J].Meat Science,2014,96(3):1250-1257.DOI:10.1016/j.meatsci.2013.10.032.
    [19]何向丽.猪里脊肉冻结解冻特性及高压静电场(HVEF)解冻机理研究[D].北京:中国农业大学,2016:19-27.
    [20]邹华锋,文美英,魏星华,等.生猪宰前不同静养时间和屠宰方式对背最长肌肌肉p H值和滴水损失的影响[J].肉类工业,2013(5):19-21.DOI:10.3969/j.issn.1008-5467.2013.05.007.
    [21]常海军,唐翠,唐春红.不同解冻方式对猪肉品质特性的影响[J].食品科学,2014,35(10):1-5.DOI:10.7506/spkx1002-6630-201410001.
    [22]CHANG Haijun,XU Xinglian,ZHOU Guanghong,et al.Effects of characteristics changes of collagen on meat physicochemical properties of beef semitendinosus muscle during ultrasonic processing[J].Food and Bioprocess Technology,2012,5(1):285-297.DOI:10.1007/s11947-009-0269-9.
    [23]国家卫生和计划生育委员会.食品安全国家标准食品pH值的测定:GB 5009.237-2016[S].北京:中国标准出版社,2016:1-4.
    [24]国家食品药品监督管理总局,国家卫生和计划生育委员会.食品安全国家标准食品微生物学检验菌落总数测定:GB 4789.2-2016[S].北京:中国标准出版社,2016:1-4.
    [25]国家卫生和计划生育委员会.食品安全国家标准食品中挥发性盐基氮的测定:GB 5009.228-2016[S].北京:中国标准出版社,2016:1-3.
    [26]JOO S T,KAUFFMAN R G,KIM B C,et al.The relationship of sarcoplasmic and myofibrillar protein solubility to colour and waterholding capacity in porcine longissimus muscle[J].Meat Science,1999,52(3):291-297.DOI:10.1016/S0309-1740(99)00005-4.
    [27]谢笔钧,何慧.食品分析[M].北京:科学出版社,2009:183.
    [28]THORARINSDOTTIR K A,ARASON S,GEIRSDOTTIR M,et al.Changes in myofibrillar proteins during processing of salted cod(Gadus morhua)as determined by electrophoresis and differential scanning calorimetry[J].Food Chemistry,2002,77(3):377-385.DOI:10.1016/S0308-8146(01)00349-1.
    [29]朱东阳,康壮丽,何鸿举,等.猪血浆蛋白乳化棕榈油对猪肉糜凝胶特性的影响[J].食品科学,2018,39(5):71-75.DOI:10.7506/spkx1002-6630-201805011.
    [30]HUFFLONERGAN E,PARRISH F C,ROBAON R M.Effects of postmortern aging time,animal age,and sex on degradation of titin and nebulin in boving longissimus muscle[J].Journal of Animal Science,1995,77(4):1064-1073.DOI:10.2527/1995.7341064x.
    [31]余力,贺稚非,ENKHMAA B,等.不同解冻方式对伊拉兔肉品质特性的影响[J].食品科学,2015,36(14):258-264.DOI:10.7506/spkx1002-6630-201514049.
    [32]CHANDHYLASEKARAN V,THULAS G.Effect of different thawing methods on physicochemical characteristics of frozen buffalo meat[J].Journal of Food Technology,2010,8(6):239-242.DOI:10.3923/jftech.2010.239.242.
    [33]LLAVE Y,TERADA Y,FUKUOKA M,et al.Dielectric properties of frozen tuna and analysis of defrosting using a radio-frequency system at low frequencies[J].Journal of Food Engineering,2014,139:1-9.DOI:10.1016/j.jfoodeng.2014.04.012.
    [34]周光宏.畜产品加工学[M].北京:中国农业出版社,2004:69.
    [35]施雪,夏继华,卢进峰,等.冻结、解冻过程对肌肉品质的影响[J].食品工业,2012,33(7):21-24.
    [36]ALI S,ZHANG W G,RAJPUT N,et al.Effect of multiple freezethaw cycles on the quality of chicken breast meat[J].Food Chemistry,2015,173(8):808-814.DOI:10.1016/j.foodchem.2014.09.095.
    [37]KANG Z L,LI B,MA H J,et al.Effect of different processing methods and salt content on the physicochemical and rheological properties of meat batters[J].International Journal of Food Properties,2016,19(7):1604-1615.DOI:10.1080/10942912.2015.1105819.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700