用户名: 密码: 验证码:
一种新型PET水解酶的结构与催化机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress of the Structure and Catalytic Mechanism of One New PET Hydrolase
  • 作者:靳玉瑞 ; 李爱秀 ; 张力
  • 英文作者:JIN Yurui;LI Aixiu;ZHANG Li;Mathematics and Physics Section, Basic Science Department, Logistics University of People's Armed Police Force;
  • 关键词:聚对苯二甲酸乙二醇酯 ; 生物降解 ; PETase ; 晶体结构 ; 催化机制
  • 英文关键词:polyethylene terephthalate;;biodegradation;;PETase;;crystal structure;;catalytic mechanism
  • 中文刊名:ZGSU
  • 英文刊名:China Plastics
  • 机构:中国人民武装警察部队后勤学院基础部数理教研室;
  • 出版日期:2019-03-26
  • 出版单位:中国塑料
  • 年:2019
  • 期:v.33;No.300
  • 基金:武警后勤学院科研创新团队基金,武警后勤学院博士启动基金(WHB201702)
  • 语种:中文;
  • 页:ZGSU201903023
  • 页数:7
  • CN:03
  • ISSN:11-1846/TQ
  • 分类号:110-116
摘要
介绍了聚对苯二甲酸乙二醇酯(PET)废弃物的处理方法、新型PET水解酶PETase的降解活性及相关影响因素,总结了PETase的结构和催化降解机制,并对PETase生物降解的研究方向进行了展望。
        This paper overviewed the disposal of polyethylene terephthalate(PET) waste, and the biodegradation and relevant influence factors of a new PET hydrolase PETase. The structure and catalytic mechanism of PETase were summarized, and the future research direction of the biodegradation of PETase were prospected.
引文
[1] WEBB H, ARNOTT J, CRAWFORD R, et al. Plastic Degradation and Its Environmental Implications with Special Reference to Poly (ethylene terephthalate)[J]. Polymers, 2013, 5(1): 1-18.
    [2] 董文丽. 阻隔性包装材料及生产技术的应用发展[J]. 包装工程, 2009(10):117-120. DONG W L. Application and Development of Barrier Packaging Materials and Their ProductionTechnologies[J]. Packaging Engineering, 2009(10):117-120.
    [3] 贝荣华, 黄崇杏, 陈强,等. SiOx/PET复合薄膜的力学性能及阻隔性能[J]. 包装工程, 2017(19):63-68. BEI R H, HUANG C X, CHEN Q, et al. Mechanical Properties and Barrier Properties of SiOx/PET Composite Films[J]. Packaging Engineering, 2017(19):63-68.
    [4] 吴灿伟, 封彤波, 阎旭, 等. 封套材料在军用装备封存包装中的应用及发展趋势[J]. 包装工程, 2009(9):53-57. WU C W, FENG T B, YAN X, et al. Application and Development Trend of Envelope Materials in Military Equipment Preservative Packaging[J]. Packaging Engineering, 2009(9):53-57.
    [5] MüLLER R J, KLEEBERG I, DECKWER W D. Biodegradation of Polyesters Containing Aromatic Constituents[J]. Journal of Biotechnology, 2001, 86(2): 87-95.
    [6] NEUFELD L, STASSEN F, SHEPPARD R, et al. The New Plastics Economy: Rethinking the Future of Plastics[C]//World Economic Forum. 2016: 10-15.
    [7] 白桢慧, 苏婷婷, 王战勇. 聚丁二酸丁二醇酯基脂肪族聚酯生物降解研究进展[J]. 中国塑料, 2018, 32(12):10-15. BAI Z H, SU TT, WANG Z Y. Progress in Biodegradation Research of Poly(butylene succinate) and Its Copolyesters[J]. China Plastics, 2018, 32(12):10-15.
    [8] 马庆峰, 李会举, 沈智奇, 等. 聚ε-己内酯薄膜的脂肪酶促降解[J]. 中国塑料, 2018, 32(10):123-128. MA Q F, LI H J, SHEN Z Q, et al. Study on Biodegradation ofPolycaprolactone Films with Lipase[J]. China Plastics, 2018, 32(10):123-128.
    [9] YOSHIDA S, HIRAGA K, TAKEHANAT, et al. A Bacterium that Degrades and Assimilates Poly (ethylene terephthalate)[J]. Science, 2016, 351(6278): 1 196-1 199.
    [10] 杨华光. 金属功能化离子液体催化 PET 聚酯降解反应研究[D]. 哈尔滨:哈尔滨师范大学, 2013.
    [11] 刘红阳. 废旧PET/PC塑料回收与化学再生利用现状[J]. 橡塑资源利用, 2005(6):23-27. LIU H Y. Current Situation of Recycling and Chemical Reprocess of Waste PET/PC Plastics[J]. Rubber and Plastics Resources Utilization, 2005(6):23-27.
    [12] YOSHIOKA T, SATO T, OKUWAKI A. Hydrolysis of Waste PET by Sulfuric Acid at 150℃ for a Chemical Recycling[J]. Journal of Applied Polymer Science, 1994, 52(9): 1 353-1 355.
    [13] ROTH C, WEI R, OESER T , et al. Structural and Functional Studies on a Thermostable Polyethylene Terephthalate Degrading Hydrolase from Thermobifida fusca[J]. Applied Microbiology and Biotechnology, 2014, 98(18):7 815-7 823.
    [14] HERRERO ACERO E, RIBITSCH D, DELLACHER A, et al. Surface Engineering of a Cutinase from Thermobifida Cellulosilytica for Improved Polyester Hydrolysis[J]. Biotechnology and Bioengineering, 2013, 110(10): 2 581-2 590.
    [15] SCHRAG J D, CYGLER M. Lipases and Alpha/Beta Hydrolase Fold[J]. Methods in Enzymology, 1997, 284:85-107.
    [16] DEREWENDA U, SWENSON L, WEI Y, et al. Conformational Lability of Lipases Observed in the Absence of an Oil-Water Interface: Crystallographic Studies of Enzymes from the Fungi Humicola lanuginosa and Rhizopus delemar[J]. Journal of Lipid Research, 1994, 35(3): 524-534.
    [17] HAJIGHASEMI M, NOCEK B P, TCHIGVINTSEVA, et al. Biochemical and Structural Insights into Enzymatic Depolymerization of Polylactic Acid and Other Polyesters by Microbial Carboxylesterases[J]. Biomacromolecules, 2016, 17(6): 2 027-2 039.
    [18] ALISCH M, FEUERHACK A, MüLLER H, et al. Biocatalytic Modification of Polyethylene Terephthalate Fibres by Esterases from Actinomycete Isolates[J]. Biocatalysis and Biotransformation, 2004, 22(5): 347-351.
    [19] VERGER R. ‘Interfacial Activation’ of Lipases: Facts and Artifacts[J]. Trends in Biotechnology, 1997, 15(1): 32-38.
    [20] MüLLER R J, SCHRADER H, PROFE J, et al. Enzymatic Degradation of Poly (ethylene terephthalate): Ra-pid Hydrolyse Using a Hydrolase from T. fusca[J]. Macromolecular Rapid Communications, 2005, 26(17): 1 400-1 405.
    [21] SULAIMAN S, YAMATO S, KANAYA E, et al. Isolation of a Novel Cutinase Homolog with Polyethylene Terephthalate-Degrading Activity from Leaf-Branch Compost by Using a Metagenomic Approach [J]. Applied and Environmental Microbiology, 2012, 78(5): 1 556-1 562.
    [22] Silva C M,Carneiro F, O'neill A, et al. Cutinase-a New Tool for Biomodification of Synthetic Fibers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43(11): 2 448-2 450.
    [23] VERTOMMEN M A, NIERSTRASZ V A, VEER M V, et al. Enzymatic Surface Modification of Poly(ethylene terephthalate)[J]. Journal of Biotechnology, 2005, 120(4):376-386.
    [24] AUSTIN H P, ALLEN M D, DONOHOE B S, et al. Characterization and Engineering of a Plastic-Degrading Aromatic Polyesterase[J]. Proceedings of the National Academy of Sciences, 2018, 115(19): E4 350-E4 357.
    [25] LIU C, SHI C, ZHU S, et al. Structural and Functional Characterization of Polyethylene Terephthalate Hydrolase from Ideonella sakaiensis[J]. Biochemical and Biophysical Research Communications, 2019, 508(1): 289-294.
    [26] FURUKAWA M, KAWAKAMI N, ODA K, et al. Acceleration of Enzymatic Degradation of Poly(ethylene terephthalate) by Surface Coating with Anionic Surfactants[J]. Chem Sus Chem, 2018, 11(23): 4 018-4 025.
    [27] HAN X, LIU W, HUANG J W, et al. Structural Insight into Catalytic Mechanism of PET Hydrolase[J]. Nature Communications, 2017, 8(1): 2106.
    [28] JOO S, CHO I J, SEO H, et al. Structural Insight into Molecular Mechanism of Poly (ethylene terephthalate) Degradation[J]. Nature Communications, 2018, 9(1): 382.
    [29] FECKER T, GALAZ-DAVISON P, ENGELBERGERF, et al. Active Site Flexibility as a Hallmark for Efficient PET Degradation by I. Sakaiensis PETase[J]. Biophysical Journal, 2018, 114(6): 1 302-1 312.
    [30] MA Y, YAO M, LI B, et al. Enhanced Poly (ethylene terephthalate) Hydrolase Activity by Protein Engineering[J]. Engineering, 2018, 4(6): 888-893.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700