用户名: 密码: 验证码:
烘焙条件对生物质烘焙特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Torrefaction Conditions on the Torrefaction Characteristics of Biomass
  • 作者:闻蕾 ; 王景甫 ; 韩恒超
  • 英文作者:WEN Lei;WANG Jing-fu;HAN Heng-chao;Beijing University of Technology;
  • 关键词:生物质 ; 烘焙特性 ; 能量产率
  • 英文关键词:biomass;;torrefaction;;energy yield
  • 中文刊名:XNYJ
  • 英文刊名:Advances in New and Renewable Energy
  • 机构:北京工业大学;
  • 出版日期:2019-04-30 15:55
  • 出版单位:新能源进展
  • 年:2019
  • 期:v.7
  • 语种:中文;
  • 页:XNYJ201902002
  • 页数:8
  • CN:02
  • ISSN:44-1698/TK
  • 分类号:13-20
摘要
根据生物质种类,选取果实类生物质花生壳、木质类生物质锯末和草本类生物质竹子为对象,考察烘焙条件对生物质特性的影响。利用管式炉为烘焙实验主要装置,结合工业分析仪、元素分析仪等,考察三种生物质在烘焙温度为200~300℃和时间为30~90 min条件下烘焙产物的挥发分、固定碳含量、O/C和H/C、质量产率等,并引入烘焙程度指数来衡量烘焙前后的能量变化。实验结果表明:随着烘焙温度的升高,固定碳含量增加到40%以上,挥发分含量减少到50%以下,质量产率也随之下降。烘焙时间的影响弱于烘焙温度,随着烘焙温度的升高,烘焙时间对固体产率的影响逐渐显现,烘焙时间越长,固体产率越低。烘焙温度高于280℃、时间大于60 min时,烘焙后固体的能量产率仅为70%左右。O/C和H/C随烘焙温度升高而降低,草本类生物质竹子的能量产率受温度影响最大。果实类生物质花生壳、木质类生物质锯末的能量产率随烘焙程度指数增大而减小,而草本类生物质竹子的能量产率则呈先增后减的抛物线型,在烘焙程度为0.5时,竹子的能量产率达到最大值。各生物质烘焙程度指数的R~2值均大于0.93,因此烘焙程度指数可被视为描述或预测生物质烘焙性能的可行指标。
        According to the classification of biomass species, peanut shell(fruit-based biomass), sawdust(woody biomass)and bamboo(herbaceous biomass) were selected to study the effect of torrefaction conditions on the torrefaction characteristics of biomass. Volatiles, fixed carbon, O/C, H/C and solid yield of the three biomass at temperature of 200 ~ 300 oC with the durations of 30 ~ 90 min were investigated by using the tube furnace as the main equipment of the torrefaction experiment,combined with industrial analyzers, elemental analyzers. The torrefaction severity index(TSI) was introduced to measure the energy changes. The experimental results showed that with the increase of temperature, the fixed carbon content increased to more than 40%, the volatile content decreased to below 50%, and the solid yield decreased. The effect of duration time was less important than temperature. As the baking temperature increased, the effect of duration time on the solid yield gradually appeared, and the longer the duration time, the lower the solid yield. When the temperature was higher than280 oC and the duration time was more than 60 minutes, the solid yield was only about 70%. O/C and H/C decreased with the temperature increased, and herbaceous biomass bamboo was most affected by temperature. The energy yield of fruit-based biomass peanut shell and woody biomass sawdust decreased linearly with the TSI, while herbaceous biomass bamboo was parabolic. When TSI was 0.5, the energy yield of the bamboo reached its maximum. The R2 values of TSI were higher than 0.93, so TSI can be considered as a viable indicator for describing or predicting the torrefaction performance of biomass.
引文
[1]PENG J H,BI X T,SOKHANSANJ S.Torrefaction and densification of different species of softwood residues[J].Fuel,2013,111:411-421.DOI:10.1016/j.fuel.2013.04.048.
    [2]BRIDGEMAN T G,JONES J M,SHIELD I,et al.Torrefaction of reed canary grass,wheat straw and willow to enhance solid fuel qualities and combustion properties[J].Fuel,2008,87(6):844-856.DOI:10.1016/j.fuel.2007.05.041.
    [3]PRINS M J,PTASINSKI K J,JANSSEN F J J G.Torrefaction of wood:part 2.Analysis of products[J].Journal of analytical and applied pyrolysis,2006,77(1):35-40.DOI:10.1016/j.jaap.2006.01.001.
    [4]WILK M,MAGDZIARZ A.Hydrothermal carbonization,torrefaction and slow pyrolysis of Miscanthus giganteus[J].Energy,2017,140:1292-1304.DOI:10.1016/j.energy.2017.03.031.
    [5]蒋恩臣,何光设.稻壳、锯末成型燃料低温热解特性试验研究[J].农业工程学报,2007,23(1):188-191.DOI:10.3321/j.issn:1002-6819.2007.01.036.
    [6]FRIEDL A,PADOUVAS E,ROTTER H.Prediction of heating values of biomass fuel from elemental composition[J].Analytica chimica acta,2005,544(1/2):191-198.
    [7]KUTLU O,KOCAR G.Upgrading lignocellulosic waste to fuel by torrefaction:characterisation and process optimization by response surface methodology[J].International journal of energy research,2018,42(15):4746-4760.DOI:10.1002/er.4228.
    [8]周伟,毕亚东,陈慧,等.木质纤维素生物质组分的催化快速热解[J].天津理工大学学报,2018,34(3):61-64.DOI:10.3969/j.issn.1673-095X.2018.03.013.
    [9]薛阳,冯银虎.乌拉盖地区褐煤综合利用方案设计[J].矿产综合利用,2017(1):109-112.DOI:10.3969/j.issn.1000-6532.2017.01.025.
    [10]CHEN D Y,MEI J M,LI H P,et al.Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products[J].Bioresource technology,2017,228:62-68.DOI:10.1016/j.biortech.2016.12.088.
    [11]马中青,马乾强,王家耀,等.基于TG-FTIR和Py-GC/MS的生物质三组分快速热解机理研究[J].科学技术与工程,2017,17(9):59-66.DOI:10.3969/j.issn.1671-1815.2017.09.010.
    [12]BURATTI C,BARBANERA M,LASCARO E,et al.Optimization of torrefaction conditions of coffee industry residues using desirability function approach[J].Waste management,2018,73:523-534.
    [13]WANG S R,GUO X J,WANG K G,et al.Influence of the interaction of components on the pyrolysis behavior of biomass[J].Journal of analytical and applied pyrolysis,2011,91(1):183-189.DOI:10.1016/j.jaap.2011.02.006.
    [14]张雨,王浚浩,马中青,等.温度对竹材烘焙过程中气固液三相产物组成及特性的影响[J].农业工程学报,2018,34(18):242-251.DOI:10.11975/j.issn.1002-6819.2018.18.030.
    [15]胡双清,王亚琢,刁兴兴,等.烘焙对生物质热化学转化特性影响的研究进展[J].新能源进展,2018,6(1):26-35.DOI:10.3969/j.issn.2095-560X.2018.01.005.
    [16]汪军,马其良,张振东.工程燃烧学[M].北京:中国电力出版社,2008:18-19.
    [17]OLUOTI K,DODDAPANENI T R K C,RICHARDS T.Investigating the kinetics and biofuel properties of Alstonia congensis and Ceiba pentandra via torrefaction[J].Energy,2018,150:134-141.DOI:10.1016/j.energy.2018.02.086.
    [18]ZHANG C Y,HO S H,CHEN W H,et al.Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index[J].Applied energy,2018,220:598-604.DOI:10.1016/j.apenergy.2018.03.129.
    [19]PAHLA G,NTULI F,MUZENDA E.Torrefaction of landfill food waste for possible application in biomass co-firing[J].Waste management,2018,71:512-520.DOI:10.1016/j.wasman.2017.10.035.
    [20]朱波.农业秸秆烘焙与高质化应用耦合研究[D].武汉:华中科技大学,2011.
    [21]ROUSSET P,DAVRIEUX F,MACEDO L,et al.Characterisation of the torrefaction of beech wood using NIRS:combined effects of temperature and duration[J].Biomass and bioenergy,2011,35(3):1219-1226.DOI:10.1016/j.biombioe.2010.12.012.
    [22]CHEN W H,HUANG M Y,CHANG J S,et al.Torrefaction operation and optimization of microalga residue for energy densification and utilization[J].Applied energy,2015,154:622-630.DOI:10.1016/j.apenergy.2015.05.068.
    [23]CHEN W H,CHENG W Y,LU K M,et al.An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction[J].Applied energy,2011,88(11):3636-3644.DOI:10.1016/j.apenergy.2011.03.040.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700