用户名: 密码: 验证码:
基于碳基电极的电化学传感器检测铅离子的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Review of Carbon-based Electrochemical Sensor for the Detection of Lead Ion
  • 作者:林少华 ; 谢银侠 ; 罗红霞 ; 许文涛 ; 申慧杰
  • 英文作者:LIN Shao-hua;XIE Yin-xia;LUO Hong-xia;XU Wen-tao;SHEN Hui-jie;Beijing Vocational College of Agriculture;College of Food Science and Nutritional Engineering,China Agricultural University;
  • 关键词:铅离子检测 ; 碳基电极 ; 电极修饰 ; 电化学传感器
  • 英文关键词:detection of lead;;carbon-based electrode;;electrode modifying;;electrochemical sensor
  • 中文刊名:SWJT
  • 英文刊名:Biotechnology Bulletin
  • 机构:北京农业职业学院;中国农业大学食品科学与营养工程学院;
  • 出版日期:2019-03-26
  • 出版单位:生物技术通报
  • 年:2019
  • 期:v.35;No.320
  • 语种:中文;
  • 页:SWJT201903027
  • 页数:11
  • CN:03
  • ISSN:11-2396/Q
  • 分类号:189-199
摘要
重金属铅离子在空气、水、土壤和食物中普遍存在而且含量越来越高。铅离子具有较大的毒性,对人体的健康有很大的危害。近年来发展了很多检测铅离子的方法,其中以碳基为基底电极的电化学传感器由于具有简单、快速、灵敏等优点而备受青睐。从复合电极修饰材料的角度,综述了基于无机材料、有机材料和功能核酸等复合电极在检测铅离子的研究进展,重点介绍了碳基电极的发展历程、构建及铅离子的检测方法,对基于碳基电极的铅离子电化学传感器的发展前景进行了展望。
        Lead ion commonly exists in air,water,soil and food,and in which the concentration of lead is increasing. Lead ion is a toxic pollutant and is extremely harmful to human health. A lot of strategies have been proposed for detecting lead ion,carbon-based electrochemical sensors have gained growingly attentions owing to simplicity,rapidity and sensitivity. From the point of view of modified material of composite electrode,this paper reviews the research progress of composite electrodes based on inorganic materials,organic materials and functional nucleic acids in the detection of lead ion. The development,construction approaches and sensing performances of carbon-based electrodes are mainly introduced. At last,the trends of the carbon-based lead-ion electrochemical sensor are also prospected.
引文
[1]Markovac J, Goldstein GW. Picomolar concentrations of lead stimulate brain protein kinase C[J]. Nature, 1988, 334(6177):71-73.
    [2]Bagchi D, Bagchi M, Stohs SJ, et al. Free radicals and grape seed proanthocyanidin extract:importance in human health and disease prevention[J]. Toxicology, 2000, 148(2):187-197.
    [3]United States Environmental Protection Agency. Reducing health risks worldwide:Report No EPA-160-K-98-001. Washington D. C.1998.
    [4]Kayhanian M. Trend and concentrations of legacy lead(Pb)in highway runoff[J]. Environmental Pollution, 2012, 160(1):169-177.
    [5]Huang PC, Su PH, Chen HY, et al. Childhood blood lead levels and intellectual development after ban of leaded gasoline in Taiwan:a9-year prospective study[J]. Environment International 2012, 40(2):88-96.
    [6]Nigg JT, Knottnerus GM, Martel MM, et al. Low blood lead levels associated with clinically diagnosed attention-deficit/hyperactivity disorder and mediated by weak cognitive control[J]. Biological Psychiatry, 2008, 63(3):325-331.
    [7]Griffiths C, Klemick H, Massey M, et al. US environmental protection agency valuation of surface water quality improvements[J].Review of Environmental Economics&Policy, 2012, 6(1):130-146.
    [8]Saidur MR, Aziz AR, Basirun WJ. Recent advances in DNAbased electrochemical biosensors for heavy metal ion detection:A review[J]. Biosens Bioelectron, 2017, 90:125-139.
    [9]Yang L, Saavedra SS. Chemical sensing using sol-gel derived planar waveguides and indicator phases[J]. Analytical Chemistry, 1995,67(8):1307-1314.
    [10]Ewing GW. Analytical Instrumentation Handbook[M]. 2rd ed.New York:Marcel Dekker, 1997.
    [11]Liu HW, Jiang SJ, Liu SH. Determination of cadmium, mercury and lead in seawater by electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry[J].Spectrochimica Acta B, 1999, 54(9):1367-1375.
    [12]Reb?cho J, Carvalho ML, Marques AF, et al. Lead post-mortem intake in human bones of ancient populations by(109)Cd-based X-ray fluorescence and EDXRF[J]. Talanta, 2006, 70(5):957-961.
    [13]Zeng W, Chen Y, Cui H, et al. Single-column method of ion chromatography for the determination of common cations and some transition metals[J]. J Chromatogr A, 2006, 1118(1):68-72.
    [14]JamaliMR,AssadiY,ShemiraniF,etal.Synthesisof salicylaldehyde-modified mesoporous silica and its application as a new sorbent for separation, preconcentration and determination of uranium by inductively coupled plasma atomic emission spectrometry[J]. Anal Chim Acta, 2006, 579(1):68-73.
    [15]Drummond TG, Hill MG, Barton JK. Electrochemical DNA sensors[J]. Nature Biotechnology, 2003, 21(10):1192-1199.
    [16]Ronkainen NJ, H Brian H, Heineman WR. Electrochemical biosensors[J]. Chem Soc Rev, 2010, 39(5):1747-1763.
    [17]Kyrisoglou C, Economou A, Efstathiou CE. Bismuth-coated iridium microwire electrode for the determination of trace metals by anodic stripping voltammetry[J]. Electroanalysis, 2012, 24(9):1825-1832.
    [18]Lu Y, Liang X, Niyungekoa C, et al. A review of the identification anddetectionofheavymetalionsintheenvironmentby voltammetry[J]. Talanta, 2017, 178:324-338.
    [19]Bowler R, Davies TJ, And MEH, et al. Electrochemical cell for surface analysis[J]. Analytical Chemistry, 2005, 77(6):1916-1919.
    [20]Marcoux LS, Prater KB, Prater BG, et al. A nonaqueous carbon paste electrode[J]. Anal Chem, 2002, 37(11):1446-1447.
    [21]Zittel HE, Miller FJ, Chem A. A glassy-carbon electrode for voltammetry[J]. Analytical Chemistry, 1965, 37(2):200-203.
    [22]Wang Z, Wang H, Zhang Z, et al. Electrochemical determination of lead and cadmium in rice by adisposable bismuth/electrochemically reduced graphene/ionic liquid composite modified screen-printed electrode[J]. Sensors&Actuators B, 2014, 199:7-14.
    [23]Robinson JE, Heineman WR, Sagle LB, et al. Carbon nanofiber electrode array for the detection of lead[J]. Electrochemistry Communications, 2016, 73:89-93.
    [24]Liu HJ, Qu LN, Hu S, et al. Sensitive and simple electrochemical detection of lead(II)with carbon ionic liquid electrode[J].Journal of the Chinese Chemical Society, 2010, 57(6):1367-1373.
    [25]Yano T. Electrochemical behavior of highly conductive boron-doped diamond electrodes for oxygen reduction in acid solution[J]. J Electrochem Soc, 1999, 146(3):1081-1087.
    [26]Roohollah TK, Craig EB, Ji X, et al. Electroanalytical determination of cadmium(II)and lead(II)using an in-situ bismuth film modified edge plane pyrolytic graphite electrode[J]. Analytical Sciences, 2007, 23:283-289.
    [27]Casta?eda MT, Pérez B, Pumera M, et al. Sensitive stripping voltammetry of heavy metals by using a composite sensor based on a built-in bismuth precursor[J]. Analyst, 2005, 130(6):971-976.
    [28]Potlako JM, Azeez OI, Nonhlangabezo M, et al. Electrochemical co-detection of As(III), Hg(II)and Pb(II)on a bismuth modified exfoliated graphite electrode[J]. Talanta, 2016, 153:99-106.
    [29]Wang Z, Liu E. Graphene ultrathin film electrode for detection of lead ions in acetate buffer solution[J]. Talanta, 2013, 103(2):47-55.
    [30]Demetriades D, Economou A, Voulgaropoulos A. A study of pencillead bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry[J]. Anal Chim Acta, 2004, 519(2):167-172.
    [31]Pauliukait?R. Characterization and application of bismuth-film modified carbon film electrodes[J]. Electroanalysis, 2005, 17(15-16):1354-1359.
    [32]Hadi M, Rouhollahi A, Yousefi M. Application of nanocrystalline graphite-like pyrolytic carbon film electrode for voltammetric sensing of lead[J]. Journal of Applied Electrochemistry, 2011,42(3):179-187.
    [33]Afkhami A, Ghaedi H, Madrakian T, et al. Highly sensitive simultaneous electrochemical determination of trace amounts of Pb(II)and Cd(II)using a carbon paste electrode modified with multi-walled carbon nanotubes and a newly synthesized Schiff base[J]. Electrochimica Acta, 2013, 89:377-386.
    [34]McCreery RL, Bard AJ. Eletroanalytical Chemistry[M]. New York:Marcel Dekker, 1991.
    [35]Kaushika A, Khan R, Solanki PR, et al. Iron oxide nanoparticleschitosan composite based glucose biosensor[J]. Biosens Bioelectron, 2012, 24(4):676-683.
    [36]Zuman P. Stripping Analysis:Principles, instrumentation and applications[J]. Microchem J, 1986, 33(1):135-136.
    [37]Zhu L, Xu L, Huang B, et al. Simultaneous determination of Cd(II)and Pb(II)using square wave anodic stripping voltammetry at a gold nanoparticle-graphene-cysteine composite modified bismuth film electrode[J]. Electrochimica Acta, 2014, 115(3):471-477.
    [38]Kaur B, Srivastava R, Satpati B. Ultratrace detection of toxic heavy metal ions found in water bodies using hydroxyapatite supported nanocrystalline ZSM-5 modified electrodes[J]. New Journal of Chemistry, 2015, 39(7):5137-5149.
    [39]Wang J, Lu J, Hocevar SB, et al. Bismuth-coated carbon electrodes for anodic stripping voltammetry[J]. Analytical Chemistry, 2000,72(14):3218-3222.
    [40]Zhou H, Hou H, Dai L, et al. Preparation of dendritic bismuth film electrodes and their application for detection of trace Pb(II)and Cd(II)[J]. Chinese Journal of Chemical Engineering, 2016, 24(3):410-414.
    [41]Yantasee W, Hongsirikarn K, Warner CL, et al. Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles[J]. Analyst, 2008, 133(3):348-355.
    [42]Liu MC, Zhao GH, Tang YT, et al. A simple, stable and picomole level lead sensor fabricated on DNA-based carbon hybridized TiO2nanotube arrays[J]. Environmental Science&Technology, 2010,44(11):4241-4246.
    [43]WeiY,GaoC,MengFL.SnO2/Reducedgrapheneoxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II):An interesting favorable mutual interference[J]. The Journal of Physical Chemistry C, 2012, 116(1):1034-1041.
    [44]Liu ZG, Sun YF, Chen WK, et al. Facet-dependent stripping behavior of Cu2O microcrystals toward lead Ions:A rational design for the determination of lead ions[J]. Small 2015, 11(21):2493-2498.
    [45]Li PH, Li YX, Chen SH, et al. Sensitive and interference-free electrochemical determination of Pb(II)in wastewater using porous Ce-Zr oxide nanospheres[J]. Sensors&Actuators B,2018, 257:1009-1020.
    [46]Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J].Journal of the American Chemical Society, 2004, 126(40):12736-12737.
    [47]WangJ,ZhangW,YueX,etal.One-potsynthesisof multifunctional magnetic ferrite-MoS2-carbondot nanohybrid adsorbent for efficient Pb(II)removal[J]. Journal of Materials Chemistry A, 2016, 4(10):3893-3900.
    [48]Li L, Liu D, Shi A, et al. Simultaneous stripping determination of cadmium and lead ionsbased on the N-doped carbon quantum dotsgraphene oxide hybrid[J]. Sensors&Actuators B, 2018, 255:1762-1770.
    [49]SimpsonA,PandeyRR,CharlesCC,etal.Fabrication characterization and potential applications of carbon nanoparticles in the detection of heavy metal ions in aqueous media[J].Carbon, 2018, 127:122-130.
    [50]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991, 354(6348):56-58.
    [51]Novoselov KS, Geim AK, Morozov SV, et al. Two-dimensional gas of massless Dirac fermions in grapheme[J]. Nature, 2005, 438(7065):197-200.
    [52]Priya T, Dhanalakshmi N, Thennarasu S, et al. A novel voltammetric sensor for the simultaneous detection of Cd2+andPb2+using graphene oxide/κ-carrageenan/L-cysteine nanocomposite[J].Carbohydrate Polymers, 2018, 182:199-206.
    [53]Ping J, Wang Y, Wu J, et al. Development of an electrochemically reduced graphene oxide modified disposable bismuth film electrode and its application for stripping analysis of heavy metals in milk[J]. Food Chemistry, 2014, 151(4):65-71.
    [54]Liu FM, Zhang Y, Yin W, et al. A high-selectivity electrochemical sensorforultra-tracelead(II)detectionbasedona nanocomposite consisting of nitrogen-doped graphene/gold nanoparticles functionalized with ETBD and Fe3O4@TiO2 core-shell nanoparticles[J]. Sensors&Actuators B, 2016, 242:889-896.
    [55]Muralikrishna S, Nagaraju DH, Balakrishna RG, et al. Hydrogels of polyaniline with graphene oxide for highly sensitive electrochemical determination of lead ions[J]. Anal Chim Acta, 2017, 990:67-77.
    [56]Xue S, Jing P, Xu W. Hemin on graphene nanosheets functionalized with flower-like MnO2andhollowAuPdfortheelectrochemical sensing lead ion based on the specific DNAzyme[J]. Biosens Bioelectron, 2016, 86:958-965.
    [57]Yantasee W, Deibler LA, Fryxell GE, et al. Screen-printed electrodes modified with functionalized mesoporous silica for voltammetric analysis of toxic metal ions[J]. Electrochemistry Communications, 2005, 7(11):1170-1176.
    [58]Yuan Y, Zhao G, Liu G. A sensitive electrochemical sensor using a mesoporous carbon and nafion composite for the simultaneous detection of cadmium and lead[J]. International Journal of Electrochemical Science, 2017, 12:5378-5391.
    [59]Oztekin Y, Ramanaviciene A, Ramanavicius A. Electrochemical copper(II)sensor based on self-assembled 4-amino-6-hydroxy-2-mercaptopyrimidine monohydrate[J]. Sensors&Actuators B:Chemical, 2011, 155(2):612-617.
    [60]Wu Y, Li NB, Luo HQ. Simultaneous measurement of Pb, Cd and Zn using differential pulse anodic stripping voltammetry at a bismuth/poly(p-aminobenzene sulfonic acid)film electrode[J].Sensors&Actuators B, 2008, 133(2):677-681.
    [61]Fatima ES, Ouarzane A, Rhazi ME. Electrochemical detection of lead(II)at bismuth/Poly(1, 8-diaminonaphthalene)modified carbon paste electrode[J]. Arabian Journal of Chemistry, 2017,10:596-603.
    [62]Dai H, Wang N, Wang D, et al. An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II)and Pb(II)[J]. Chemical Engineering Journal, 2016, 299:150-155.
    [63]Promphet N, Rattanarat P, Rangkupan R, et al. An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium[J]. Sensors&Actuators B, 2015, 207:526-534.
    [64]Zhang H, Jiang B, Xiang Y, et al. DNAzyme-based highly sensitive electronic detection of lead via quantum dot-assembled amplification labels[J]. Biosens Bioelectron, 2011, 28(1):135-138.
    [65]Tang S, Wei L, Fang G, et al. A novel electrochemical sensor for lead ion based on cascade DNA and quantum dots amplification[J]. Electrochimica Acta, 2014, 134(21):1-7.
    [66]Zeng G, Zhu Y, Zhang Y, et al. Electrochemical DNA sensing strategy based on strengthening electronic conduction and a signal amplifier carrier of nanoAu/MCN composited nanomaterials for sensitive lead detection[J]. Environmental Science Nano, 2016,3(6):1504-1509.
    [67]Zhou Y, Lin T, Zeng G, et al. Label free detection of lead using impedimetric sensor based on ordered mesoporous carbon-gold nanoparticles and DNAzyme catalytic beacons[J]. Talanta,2016, 146:641-647.
    [68]ZhangC,LaiC,ZengG,etal.NanoporousAu-based chronocoulometric aptasensor for amplified detection of Pb2+using DNAzyme modified with Au nanoparticles[J]. Biosens Bioelectron, 2016, 81:61-67.
    [69]Tang S, Tong P, Li H, et al. Ultrasensitive electrochemical detection of Pb2+basedonrollingcircleamplificationandquantumdots tagging[J]. Biosens Bioelectron, 2013, 42(12):608-611.
    [70]Li Y, Liu XR, Ning XH, et al. An ionic liquid supported CeO2nanoparticles-carbonnanotubescomposite-enhanced electrochemical DNA-based sensor for the detection of Pb2+[J].Journal of Pharmaceutical Analysis, 2011, 1(4):258-263.
    [71]Li Y, Wang C, Zhu Y, et al. Fully integrated graphene electronic biosensor for label-free detection of lead(II)ion based on G-quadruplex structure-switching[J]. Biosens Bioelectron, 2017,89(2):758-763.
    [72]Zhu Y, Zeng G, Zhang Y, et al. Highly sensitive electrochemical sensor using a MWCNTs/GNPs-modified electrode for lead(II)detection based on Pb2+-induced G-rich DNA conformation[J].Analyst, 2014, 139(19):5014-5020.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700