用户名: 密码: 验证码:
膏体料浆管道输送中粗骨料颗粒运动规律分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of law of movement of coarse aggregate particles in pipeline transportation of paste
  • 作者:颜丙恒 ; 李翠平 ; 吴爱祥 ; 王洪江 ; 侯贺子
  • 英文作者:YAN Bingheng;LI Cuiping;WU Aixiang;WANG Hongjiang;HOU Hezi;School of Civil and Resource Engineering, University of Science and Technology Beijing;State Key Laboratory of High-Efficient Mining and Safety of Metal Mines,Ministry of Education;
  • 关键词:粗骨料颗粒 ; 复合流动模型 ; MPM模型 ; 剪切流动区 ; 非剪切流动区
  • 英文关键词:coarse aggregate particles;;composite flow model;;macroscopic particle model;;shear flow region;;non-shear flow region
  • 中文刊名:ZNGD
  • 英文刊名:Journal of Central South University(Science and Technology)
  • 机构:北京科技大学土木与资源工程学院;金属矿山高效开采与安全教育部重点实验室;
  • 出版日期:2019-01-26
  • 出版单位:中南大学学报(自然科学版)
  • 年:2019
  • 期:v.50;No.293
  • 基金:国家重点研发计划项目(2017YFC0602903);; 国家自然科学基金资助项目(51774039)~~
  • 语种:中文;
  • 页:ZNGD201901022
  • 页数:8
  • CN:01
  • ISSN:43-1426/N
  • 分类号:178-185
摘要
为分析粗骨料膏体料浆在管道输送时因剪切诱导作用而使粗骨料颗粒产生的相对运动,以全尾砂膏体料浆能够限制尾砂颗粒的沉降运动为出发点,将全尾砂膏体料浆视为伪匀质悬浮液,将不具有流变活性的粗骨料颗粒视为被承载固体。依据粗骨料膏体管道输送时的流速分布特性,构建具有剪切流动区与非剪切流动区的复合流动模型。通过宏观颗粒模型MPM研究粗骨料颗粒的运动规律,分析粗骨料颗粒在X轴、Y轴和Z轴方向上的位移与线速度。研究结果表明:粗骨料颗粒在剪切流动区域内存在较明显的径向偏移与轴向差速运动,粗骨料颗粒在剪切流动区域内发生相对运动的主要原因为径向的流速梯度引起颗粒的自旋转。通过数值计算结果与理论分析的对比,说明复合流动模型描述粗骨料颗粒运动的可行性以及相对运动原因的可信性。
        To analyze the relative motion of coarse aggregate particles caused by shear-induced effect in pipeline transportation of paste, the fact that unclassified tailing paste could limit the sedimentation of tailing particles was considered as the starting point; unclassified tailing paste was regarded as pseudo-homogeneous suspensions and coarse aggregate particles without rheological properties was deemed as solid particles being loaded. With the characteristics of velocity profile in pipeline transportation of paste being considered, a composite flow model with shear flow region and non-shear flow region was built. The law of movement of coarse aggregate particle was studied by macroscopic particle model(MPM). Analysis of the displacement and linear velocity of coarse aggregate particles in X-axis, Y-axis and Z-axis was conducted. The results show that coarse aggregate particles have obvious radial deviation and axial differential motion in the shear flow region, and the main reason for the relative motion of coarse aggregate particles in the shear flow region is the spin of particles caused by the radial velocity gradient. Numerical results are compared with the results of the theoretical analysis. Feasibility of describing the movement of coarse aggregate particles and credibility of describing reasons of relative motion by using composite flow model are explained.
引文
[1]吴爱祥,王洪江.金属矿膏体充填理论与技术[M].北京:科学出版社,2015:263-287.WU Aixiang,WANG Hongjiang.The theory and technology of metal ore paste backfill[M].Beijing:Science Press,2015:263-287.
    [2]翟永刚,吴爱祥,王洪江,等.全尾砂膏体充填临界质量分数[J].北京科技大学学报,2011,33(7):795-799.ZHAI Yonggang,WU Aixiang,WANG Hongjiang,et al.Threshold mass fraction of unclassified-tailings paste for backfill mining[J].Journal of University of Science and Technology Beijing,2011,33(7):795-799.
    [3]刘晓辉.膏体流变行为及其管流阻力特性研究[D].北京:北京科技大学土木与资源工程学院,2015:48-68.LIU Xiaohui.Study on rheological behavior and pipe flow resistance of paste backfill[D].Beijing:University of Science and Technology Beijing.School of Civil and Resource Engineering,2015:48-68.
    [4]吴爱祥,王建栋,彭乃兵.颗粒级配对粗骨料充填料浆离析的影响[J].中南大学学报(自然科学版),2016,47(9):3201-3207.WU Aixiang,WANG Jiandong,PENG Naibing.Effect of grain composition on coarse aggregate filling slurry segregation[J].Journal of Central South University(Science and Technology),2016,47(9):3201-3207.
    [5]PULLUM L,GRAHAM L,RUDMAN M,et al.High concentration suspension pumping[J].Minerals Engineering,2006,19(5):471-477.
    [6]PULLUM L.Pipelining tailings,pastes,and backfill[C]//Proceedings of the 10th International Seminar on Paste and Thickened Tailings.Perth,Australia,2007:113-129.
    [7]PULLUM L,GRAHAM L J W,SLATTER P.A non-Newtonian two-layer model and its application to high density hydrotransport[C]//Proceedings of the 16th International Conference on Hydrotransport.Santiago,Chile,2004:579-593.
    [8]HART B,BOGER D V.Tailings waste minimisation,rheology,and the triple bottom line[C]//Proceedings of the International Seminar on Paste and Thickened Tailings.Nedlands Wa,Australia:University of Western Australia.Australian Center for Geomechanics,2005:5-27.
    [9]王洪江,李公成,吴爱祥,等.不同粗骨料的膏体流变性能研究[J].矿业研究与开发,2014,34(7):59-62.WANG Hongjiang,LI Gongcheng,WU Aixiang,et al.Study on rheological properties of paste with different coarse aggregate[J].Mining Research and Development,2014,34(7):59-62.
    [10]王洪江,吴爱祥,肖卫国,等.粗粒级膏体充填的技术进展及存在的问题[J].金属矿山,2009(11):1-5.WANG Hongjiang,WU Aixiang,XIAO Weiguo,et al.The progresses of coarse paste fill technology and its existing problem[J].Metal Mine,2009(11):1-5.
    [11]MERKAK O,JOSSIC L,MAGNIN A.Dynamics of particles suspended in a yield stress fluid flowing in a pipe[J].AIChEJournal,2008,54(5):1129-1138.
    [12]MERKAK O,JOSSIC L,MAGNIN A.Migration and sedimentation of spherical particles in a yield stress fluid flowing in a horizontal cylindrical pipe[J].AIChE Journal,2009,55(10):2515-2525.
    [13]CHHABRA R P,RICHARDSON J F.Non-Newtonian flow in the process industries:fundamentals and engineering applications[M].Oxford:Butterworth-Heinemann,1999:197-201.
    [14]吴爱祥,焦华喆,王洪江,等.膏体尾矿屈服应力检测及其优化[J].中南大学学报(自然科学版),2013,44(8):3370-3376.WU Aixiang,JIAO Huazhe,WANG Hongjiang,et al.Yield stress measurements and optimization of paste tailings[J].Journal of Central South University(Science and Technology),2013,44(8):3370-3376.
    [15]BOGER D V.Rheology and the resource industries[J].Chemical Engineering Science,2009,64(22):4525-4536.
    [16]POOLE R J.The deborah and weissenberg numbers[J].The British Society of Rheology-Rheology Bulletin,2012,53(2):32-39.
    [17]岳湘安.液-固两相流基础[M].北京:石油工业出版社,1996:64-96.YUE Xiangan.Liquid-Solid two-phase flow foundation[M].Beijing:Petroleum Industry Press,1996:64-96.
    [18]AGRAWAL M,BAKKER A,PRINKEY M T.Macroscopic particle model-tracking big particles in CFD[C]//Proceedings of AIChE 2004 Annual Meeting.Austin,Texas,USA,2004:268b.
    [19]OOKAWARA S,AGRAWAL M,STREET D,et al.Quasi-direct numerical simulation of lift force-induced particle separation in a curved microchannel by use of a macroscopic particle model[J].Chemical Engineering Science,2007,62(9):2454-2465.
    [20]WADNERKAR D,AGRAWAL M,TADE M O,et al.Hydrodynamics of macroscopic particles in slurry suspensions[J].Asia-Pacific Journal of Chemical Engineering,2016,11(3):467-479.
    [21]SORIA J,GAUTHIER D,FLAMANT G,et al.Coupling scales for modelling heavy metal vaporization from municipal solid waste incineration in a fluid bed by CFD[J].Waste Management,2015,43:176-187.
    [22]AGRAWAL M,OOKAWARA S,OGAWA K.Drag force formulation in macroscopic particle model and its validation[C]//Proceedings of AIChE 2009 Annual Meeting,Nashville,Tennessee,USA,2009:1-3.
    [23]NGUYEN Q H,NGUYEN N D.Incompressible Non-Newtonian Fluid flows:continuum mechanics-progress in fundamentals and engineering Applications[M].London:InTech Publications,2012:59-63.
    [24]WASP E J,KENNY J P,GANDHI R L.Solid-liquid flow slurry pipeline transportation[M].Stafa-Zurich:Trans Tech Publications Ltd,1977:51-56.
    [25]谢振华,宋存义.工程流体力学[M].3版.北京:冶金工业出版社,2007:67-91.XIE Zhenhua,SONG Cunyi.Engineering fluid mechanics[M].3rd ed.Beijing:Metallurgical Industry Press,2007:67-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700