用户名: 密码: 验证码:
微结构气体探测器中紫外激光束的信号和指向精度实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Signal and pointing accuracy of ultraviolet laser in micro-pattern gaseous detector
  • 作者:王海云 ; 祁辉荣 ; 刘凌 ; 原之洋 ; 张余炼 ; 温志文 ; 张建 ; 陈元柏 ; 欧阳群
  • 英文作者:Wang Hai-Yun;Qi Hui-Rong;Liu Ling;Yuan Zhi-Yang;Zhang Yu-Lian;Wen Zhi-Wen;Zhang Jian;Chen Yuan-Bo;Ouyang Qun;Institute of High Energy Physics,Chinese Academy of Sciences;State Key Laboratory of Particle Detection and Electronics;University of Chinese Academy of Sciences;School of Nuclear Science and Technology,University of Lanzhou;
  • 关键词:微结构气体探测器 ; 紫外激光 ; 双光子电离
  • 英文关键词:micro pattern gaseous detector;;ultraviolet laser;;two-photon ionization
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中国科学院高能物理研究所;核探测与核电子学国家重点实验室;中国科学院大学;兰州大学核科学与技术学院;
  • 出版日期:2019-01-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家重点研发计划(批准号:2016YFA0400400);; 国家自然科学基金(批准号:11675197,11775242)资助的课题~~
  • 语种:中文;
  • 页:WLXB201902007
  • 页数:9
  • CN:02
  • ISSN:11-1958/O4
  • 分类号:63-71
摘要
在气体探测器研究中,利用266 nm紫外激光的双光子电离物理机制使气体电离产生可测量的信号,是一种重要的标定方法.随着微结构气体探测器(MPGD)的不断发展,用紫外激光标定来实现较高精度位置分辨率成为了一种研究需求,对此有两个关键技术问题需要解决:实验研究激光可测信号大小以及激光指向精度.分析和模拟计算了紫外光电离信号大小和激光调光误差,基于微结构气体电子倍增器探测器与266 nm波长激光束,在工作气体Ar/CO_2(70/30)中,测量了不同光斑面积与输出信号的关系;设计和研制了紫外激光调光系统,实验测量了紫外光调光偏差.模拟结果与实验结果对比分析表明:紫外激光束作用于气体探测器,探测器增益在5000,前放增益为10 mV/fC时, 6 mm读出条宽输出信号幅度约400 mV;在探测器内传播距离为400 mm时,较短时间内(10—20 min)实验调光指向精度可以保证小于5′,引入z向偏差最大可以达到0.33 mm,对应z向漂移速度的测量相对误差为6.4×10-4.该研究为MPGD与紫外激光标定实验设计提供主要的设计参考.
        In the study of the gas detectors, it is an important calibration method to use the ultraviolet(UV) laser with two-photon ionization mechanism for producing ionized signal. In the last decades, micro pattern gas detector, especially gaseous electron multiplier and micromesh gaseous detector, has been widely used in high energy experiments. These kinds of gaseous detectors have the advantages of higher ion backflow suppression ability, smaller E × B effect and good radiation resistance under the relatively higher count rate environment.To obtain a higher spatial resolution with a UV laser calibration system in gaseous electron multiplier detector,two critical technical issues remain to be resolved: the measurability of the laser signal and the accuracy of the laser beam position. In this paper, the studies in simulation and experiment are conducted to discuss these two critical questions. In the simulation section, the simulation results provide an estimation of signal in the gaseous electron multiplier detector with UV laser of 266 nm wavelength in the mixture working gases of Ar/CO_2(70/30), and give an evaluation of the laser pointing accuracy and the possible relative error of the electron drift velocity. In the experiment section, a UV laser calibration prototype is designed and developed. A pulsed laser of 266 nm wavelength is used as a signal source, which has a Gaussian-like cross section with a frequency of 10 Hz. The experimental results indicate that the signal of the UV laser in a triple gaseous electron multiplier detector reaches 400 mV for a readout strip width of 6 mm, a gain of detector of 5000, and a gain of amplifier of10 mV/fC. For the calibration laser, the angle accuracy is discussed and tested. The angle uncertainty of the laser can be kept under 5′, and the accuracy of the drift velocity can reach 6.4 × 10-4 with a shift of 0.33 mm in the z direction when the laser beam transmits a distance of 400 mm in the gas chamber. All of these results show that the laser beam specific parameters are the main reference for designing the prototype detector.According to the optimal parameters, a gaseous prototype detector will be tested in the next study.
引文
[1] Leonard A 2015 Ph. D. Dissertation(Bruxelles:Universite Libre de Bruxelles)
    [2] Delbart A, de Oliveira R, Derre J, Giomataris Y, Jeanneau F,Papadopoulos Y, Rebourgeard Ph 2001 Nucl. Iustrum.Methods A 461 84
    [3] Zibell A 2014 J. Instrum. 9 C08013
    [4] Sauli F 2002 Nucl. Instrum. Methods A 477 1
    [5] Sauli F 1997 Nucl. Instrum. Methods A 386 531
    [6] Chernyshova M, Czarski T, Dominik W, Jakubowska K,Rzadkiewicz J, Scholz M, Pozniak K, Kasprowicz G,Zabolotny W 2014 J. Instrum. 9 C03003
    [7] Giomataris I, Oliveira R D, Andriamonje S, Aune S, Charpak G, Colas P, Fanourakis G, Ferrer E, Giganon A, Rebourgeard Ph, Salin P 2006 Nucl. Instrum. Methods A 560 405
    [8] Giomataris, Y 1998 Nucl. Instrum. Methods A 419 239
    [9] Colas P, Giomataris I, Lepeltier V 2004 Nucl. Instrum.Methods A 535 226
    [10] The LHCb collaboration 2015 Int. J. Mod. Phys. A 301530022
    [11] Balla A, Bencivenni G, Branchini P, Ciambrone P,Czerwinski E, de Lucia E, Cicco A, Di Domenici D, Felici G,Morello G 2017 Nucl. Instrum. Methods A 845 266
    [12] Drheim S 2012 J. Instrum. 7 C03011
    [13] Adinoff B, Kramer G L, Petty F 2007 Nucl. Instrum. Methods A 577 455
    [14] Ketzer B, Weitzel Q, Paul S, Sauli F, Ropelewski L 2004Nucl. Instrum. Methods A 535 314
    [15] Hilke H J 2010 Rep. Prog. Phys. 73 116201
    [16] Attie D 2009 Nucl. Instrum. Methods A 598 89
    [17] Kane S, May J, Miyamoto J, Shipsey I 2003 Nucl. Instrum.Methods A 505 215
    [18] Hilke H J 1986 Nucl. Instrum. Methods A 252 169
    [19] Renault G, Nielsen B S, Westergaard J, Gaardhoje J J 2005Czech. J. Phys. 55 1671
    [20] Antonczyk D, Baechler J, Bramm R, Campagnolo R,Christiansen P, Frankenfeld U, Gonzalez Gutierrez C, Ivanov M, Kowalski M, Musa L, Przybyla A 2006 Nucl. Instrum.Methods A 565 551
    [21] Wikipedia https://en.wikipedia.org/wiki/Gaussian_beam[2018-08-30]
    [22] Qi J G, Li C J 2007 Physics Experimentation 27 34(in Chinese)[祁金刚,李春杰2007物理实验27 34]
    [23] Wang X H, Wang S Y, Zhou H, Zhang Y B 2006 Chinese Journal of Scientific Instrument 27 980(in Chinese)[王小胡,王守印,周虎,张余彬2006仪器仪表学报27 980]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700