用户名: 密码: 验证码:
四川会理拉拉铜矿CSAMT法深部找矿预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Deep Prospecting Prediction of Lala Copper Mine Based on CSAMT Method in Huili County,Sichuan Province
  • 作者:王毅 ; 刘君
  • 英文作者:Wang Yi;Liu Jun;403 Geological Team,Sichuan Bureau of Geology & Mineral Resources;
  • 关键词:铜矿 ; CSAMT法 ; 深部找矿 ; 异常解译 ; 矿化蚀变带 ; 找矿突破
  • 英文关键词:Copper deposit;;CSAMT method;;Deep prospecting;;Anomaly interpretation;;Mineralized alteration belt;;Prospecting breakthrough
  • 中文刊名:KYKB
  • 英文刊名:Modern Mining
  • 机构:四川省地质矿产勘查开发局403地质队;
  • 出版日期:2018-04-25
  • 出版单位:现代矿业
  • 年:2018
  • 期:v.34;No.588
  • 语种:中文;
  • 页:KYKB201804006
  • 页数:8
  • CN:04
  • ISSN:34-1308/TD
  • 分类号:27-33+38
摘要
拉拉铜矿是我国西南地区最大的露天铜矿山,从发现至今经过数十年开采,面临资源枯竭,亟需开展深部找矿工作,以提高矿山资源储量。可控源音频大地电磁法(Controlled source audio-frequency magnetotelluric method,CSAMT)是一种在音频大地电磁法(Audio-frequency magnetotelluric,AMT)和大地电磁法(Magnetotelluric method,MT)基础上发而来的人工源频率域探测方法,近年来在深部找矿领域得到了广泛应用。为实现拉拉铜矿深部和外围找矿突破,结合矿区地质特征,采用CSAMT法进行深部勘查,共布设了13条测线,500个测点,在同一测点分别进行了高频和低频观测。通过对观测数据进行处理以及系列图件处理,结合矿区岩石电性特征与已知矿体分布情况的对比分析结果,优选出-5#、15#线进行典型剖面异常推断解译,并对推断解译剖面进行了钻探验证,在R3、R12异常附近均不同程度地见到铜矿体,品位为0.42%~0.74%、厚度为1.25~19.16 m,赋存标高为1 440~1 570 m。研究表明:钻孔见矿情况与异常解译推断成果吻合度较高,矿化区或蚀变带主要集中于视电阻率低阻条带上部或下部,低阻区中心或高阻区存在矿化蚀变的可能性较小,矿区内主要的含矿层位为天生坝组(Pt_1t)与落凼组(Pt_1n),当该2类地层中出现中高阻或中低阻接触带时,附近存在矿化蚀变带的可能性较大。
        Lala copper deposit is largest open-pit copper mine in the southwest of chiua,it has been developed for decades,the phenomenon of resource depletion of the mine is becoming more and more serious. It is necessary to conduct the deep prospecting work of the mine,so as to increase resource reserves of the mine and extent the mine service life. Controlled source audio-frequency magnetotelluric method( CSAMT) is belongs to the artificial source frequency-domain detection method,which is well developed based on audio-frequency magnetotelluric( AMT) and Magnetotelluric method( MT). In recent years,CSAMT method is widely adopted in deep prospecting area. In order to realize the goal of the prospecting breakthrough of the deep area and adjacent area of the mine,CSAMT method is applied to conduct the deep prospecting exploration work,13 exploration lines and 500 exploration points are set. High frequency and low frequency measurement work is done respectively at the same exploration point. The measurement data is processed and some corresponding maps are drawn,based on the comparative analysis of the electrical characteristics of the rock mass in mining area and distribution features of the orebodies,-5~# and 15~# exploration lines are selected as the typical profiles to interpret the anomalies,besides that,the anomaly interpretation profiles are verified by drilling engineering,the copper ore-bodies are found in the depth of R3 and R12 anomalies that are delineated based on the above study results,grade of the ore-bodies is from 0. 42% to 0. 74%,thickness of them is from 1. 25 to 19. 16 m,and the distribution elevation of them is from 1 440 to 1 570 m. The study results indicated that: distribution characteristics of the ore-bodies is basically consistent to the results of anomaly interpretations,mineralized areas or alteration zones are mainly distributed in the upper or lower of the low resistance belt of apparent resistivity,there is less possibility of the mineralization alteration in the center of low resistance zone or high resistance zone,Tianshengba Formation( Pt_1t) and Luodang Formation( Pt_1n) are the main ore-bearing strata in the mining area,if the medium-low or medium-high resistance contact belts occurs in the strata,it is highly likely that the mineralized alteration belts exist in the adjacent areas of the contact belts.
引文
[1]曹新志,张旺生,孙华山.我国深部找矿研究进展综述[J].地质科技情报,2009,28(2):104-109.
    [2]曹新志,孙华山,赵颖弘.矿区深部找矿前景快速评价的基本法和有效途径[J].地质科技情报,2009,28(3):58-62.
    [3]汤井田,何继善.可控源音频大地电磁法及其应用[M].长沙:中南大学出版社,2005.
    [4]何继善.可控源音频大地电磁法[M].长沙:中南工业大学出版社,1990.
    [5]花蕾.CSAMT与MT在寻找地热资源中的应用[D].长春:吉林大学,2012
    [6]夏训银,李毅,王身龙,等.CSAMT在城市隐伏断层探测中的应用[J].物探与化探,2013(4):687-691.
    [7]白国龙.CSAMT法在青海省木里地区煤田勘查中的应用分析研究[D].北京:中国地质大学(北京),2013.
    [8]刘金友,丁宪华,刘淑亮,等.CSAMT法在西涝口金矿勘查中的应用[J].黄金科学技术,2013(3):16-20.
    [9]牟银才,刘诚,唐构,等.可控源音频大地电磁测量(CSAMT)方法在寨上金矿区的应用[J].黄金科学技术,2015(5):6-13.
    [10]陈海锋.福建德化阳山隐伏铁矿CSAMT的异常特征[J].福建地质,2011(2):137-142.
    [11]冯兵,王珺璐,王玉,等.利用CSAMT电磁场响应提取激电效应的方法初探[J].地球物理学进展,2013(4):2116-2122.
    [12]马婵华,鲁霞,赵玉红,等.关于CSAMT法若干个问题的探讨[J].工程地球物理学报,2013(4):661-665.
    [13]柳建新,郭荣文,韩世礼,等.CSAMT法在西北深部探矿中的应用研究[J].矿产与地质,2008,22(6):261-264.
    [14]时彬.CSAMT在深部矿产勘查中的研究与应用[D].长春:吉林大学,2012.
    [15]王凯,雷宛,陈思宇.CSAMT在深部矿产勘查中的应用[J].河南科学,2013(7):1069-1072.
    [16]邱林,王绪本,李军,等.云南大红山铁铜矿CSAMT法深部勘探技术试验[J].中国科技论文,2016(9):1011-1016.
    [17]王闻文.拉拉铜矿及外围深部隐伏矿体预测中地球物理方法应用研究[D].成都:成都理工大学,2011.
    [18]张中,岳云宝,闵刚,等.CSAMT法在拉拉铜多金属矿外围深部隐伏矿体构造解译中的应用[J].价值工程,2013(16):319-320.
    [19]四川省地质局攀西地质大队第三区队.四川省会理县拉拉铜矿落凼矿区详细勘探地质报告[R].西昌:四川省地质局攀西地质大队,1982.
    [20]四川省地质矿产局.四川省区域地质志[M].北京:地质出版社,1991.
    [21]朱志敏.拉拉铁氧化物铜金矿:成矿时代和金属来源[D].成都:成都理工大学,2011.
    [22]邵昌盛.几种去噪方法在L-L深部铜矿勘探中应用[D].成都:成都理工大学,2009.
    [23]孙治新,付俊清,杜婉怡.可控源音频大地电磁法在寻找隐伏铝土矿中的应用[J].甘肃冶金,2016,38(4):83-86.
    [24]王玉林,顾广宇.激发极化法和可控源音频大地电磁法在铅锌矿勘探中的应用[J].中国资源综合利用,2013(8):58-60.
    [25]雷晓东,关伟,郭高轩,等.可控源音频大地电磁测深在北京延庆盆地东部岩溶水勘查中的应用[J].工程勘察,2014,42(5):89-92.
    [26]胡飞.CSAMT在下庄矿田铀矿找矿的应用[J].西部探矿工程,2012,24(5):127-130.
    [27]陆大进,薛国强,张凯,等.CSAMT法在石台老山隐伏矿勘探中的应用效果[J].石油管材与仪器,2011,25(2):45-48.
    [28]邓洪亮,谢向文,郭玉松.南水北调西线隧道中隐伏断层超前预报研究[J].地球物理学进展,2007,22(6):1948-1954.
    [29]黄崇珂,白治,朱裕生,等.中国铜矿床[M].北京:地质出版社,2001.
    [30]张泽斌,阮晓宽,何宇.四川拉拉铜矿矿石特征研究及其意义[J].四川有色金属,2015(3):35-39.
    [31]王若,王妙月.可控源音频大地电磁数据的反演方法[J].地球物理学新进展,2003(2):197-202.
    [32]刁理品,黎树明.贵州独山半坡锑矿CSAMT法深部找矿预测[J].金属矿山,2017(2):81-88.
    [33]余传涛.含激电效应的CSAMT二维正演与联合反演应用研究[D].太原:太原理工大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700