用户名: 密码: 验证码:
基于CSAMT结果的川东大池干井构造浅部电性结构特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Shallow electric structure character analysis of Dachiganjing structure in east Sichuan based on CSAMT results
  • 作者:栾晓东 ; 底青云 ; 安志国 ; 许诚 ; 王显祥 ; 张文伟
  • 英文作者:LUAN Xiaodong;DI Qingyun;AN Zhiguo;XU Cheng;WANG Xianxiang;ZHANG Wenwei;Institute of Geology and Geophysics, Chinese Academy of Sciences;Institutions of Earth Science, Chines Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:川东油气区 ; 大池干井构造 ; CSAMT ; 浅部电性结构
  • 英文关键词:oil and gas area in east Sichuan;;Dachiganjing structure;;CSAMT;;shallow electric structure
  • 中文刊名:ZNGD
  • 英文刊名:Journal of Central South University(Science and Technology)
  • 机构:中国科学院地质与地球物理研究所;中国科学院地球科学研究院;中国科学院大学;
  • 出版日期:2018-05-26
  • 出版单位:中南大学学报(自然科学版)
  • 年:2018
  • 期:v.49;No.285
  • 基金:国家重大科研装备研制项目(ZDYZ2012-1-05)~~
  • 语种:中文;
  • 页:ZNGD201805019
  • 页数:10
  • CN:05
  • ISSN:43-1426/N
  • 分类号:151-160
摘要
为揭示川东大池干井构造的浅部地质构造及岩石的电性特征和电磁响应规律,探索电磁法在油气探测中的应用,将可控源音频大地电磁法(CSAMT)应用于大池干井构造油气区,采用多种新技术进行CSAMT数据处理,获得地下电性体真实的电阻率特征,揭示该区的构造具有横向分段、纵向分层的电性特征。研究结果表明:东南部高陡背斜核部表现出相对高阻,此部分侏罗系地层较薄,主要是三叠系和二叠系地层呈层性分布;控制背斜的断层在电阻率上表现出次低阻的特性;西北翼表现出大范围低阻特性,主要是相对较厚的侏罗系上统和中统地层;在中部明显反映出单斜存在,主要表现为次高阻的侏罗系下统和三叠系上统地层。通过CSAMT法研究电性差异并结合地质构造可达到探测油气藏的目的。本工作可为大池干井构造地区从电性资料识别油气构造圈闭提供参考。
        In order to study the shallow geoelectric structure of Dachiganjing structure in east Sichuan and the electrical characteristics and electromagnetic response laws of rocks, as well as explore the application of electromagnetism in oil and gas detection, the controlled source audio-frequency magneto-telluric(CSAMT) survey over the Dachiganjing area was carried out and resistivity characteristics of underground electrical bodies were obtained by processing CSAMT data using variety of new techniques. The transverse section of study area showed bed-delineating electric characteristics and piecewise distribution laterally were revealed. The results show that the resistivity of steeply dipping anticline in southeastern part of the study area is relatively high, which means that the Jurassic stratum in this place is relatively thin and the main stratums are Triassic and Dyas. The fault controlled anticline is characterized as second-rate low-resistivity layer. The upper-middle Jurassic series, which mainly locate in the northwestern part of the study area, present as a large low-resistivity zone. There exists an obvious homocline in the middle part of the study area, showing a second-rated high resistivity and it can be inferred from the lower Jurassic and upper Triassic stratum.The potential region of oil and gas accumulation can be detected from subsurface electrical characteristics by combining a priori information of geological structure with CSAMT survey results.This work provides a way to recognize the structural traps,which is related to gas and oil accumulation through the resistivity structure of Dachiganjing area.
引文
[1]朱光有,张水昌,梁英波,等.四川盆地天然气特征及气源[J].地学前缘(中国地质大学(北京);北京大学),2006,13(3):234-248.ZHU Guangyou,ZHANG Shuichang,LIANG Yingbo,et al.The characteristics of natural gas in Sichuan basin and its sources[J].Earth Science Frontiers(China University of Geosciences,Beijing;Peking University),2006,13(3):234-248.
    [2]胡召奇,朱光,刘国生.等.川东“侏罗山”式褶皱带形成时代:不整合面的证据[J].地质评论,2009,55(1):32-42.HU Shaoqi,ZHU Guang,LIU Guosheng,et al.The folding time of the eastern Sichuan Jura-type fold belt:evidence from unconformity[J].Geological Review,2009,55(1):32-42.
    [3]解国爱,贾东,张庆龙,等.川东朱罗山式褶皱构造带的物理模拟研究[J].地质学报,2013,87(6):773-788.XIE Guoai,JIA Dong,ZHANG Qinglong,et al.Physical modeling of the Jura-type folds in eastern Sichuan[J].Acta Geologica Scienca,2013,87(6):773-788.
    [4]蒲家奇,孟德勤,周文.川东大池干井构造带形成机理分析及挖潜勘探评价[J].天然气工业,1995,15(2):15-19.PU Jiaqi,MENG Deqin,ZHOU Wen.The analysis of formation mechanism of Dachiganjing structural belt and the evaluation of tapping exploration potentialities in east Sichuan[J].Natural Gas Industry,1995,15(2):15-19.
    [5]陈宗清.川东大池干井构造带石炭系天然气藏与再探目标评价[J].中国海上油气(地质),1999,13(4):276-281.CHEN Zongqing.Re-evaluation of carboniferous gas pools on Dachiganjing structural zone of east Sichuan[J].China Offshore Oil and Gas(Geology),1999,13(4):276-281.
    [6]胡光灿,谢姚祥.中国四川东部高陡构造石炭系气田[M].北京:石油工业出版社,1997:30-40.HU Guangcan,XIE Yaoxiang.Carboniferous gas fields in high steep structures of eastern Sichuan[M].Beijing:Oil Industrial Press,1997:30-40.
    [7]中国地质科学院地质研究所.中国西部及邻区地质图(1:250万)[M].北京:地质出版社,2006:1.The Institute of Geology,Chinese Academy of Geological Sciences.Western China and its adjacent area geological map(1:2 500 000)[M].Beijing:Geological Publishing House,2006:1.
    [8]尹双江.万顺场石炭系气藏改建地下储气库可行性研究[D].成都:西南石油大学石油与天然气工程学院,2012:13-19.YIN Shuangjiang.The feasibility study of Wanshun gas field in carboniferous gas reservoir converted to underground gas storage[D].Chengdu:Southwest Petroleum University.College of Petroleum Engineering,2012:13-19.
    [9]江为为,刘伊克,郝天珧,等.四川盆地综合地质、地球物理研究[J].地球物理学进展,2001,16(1):11-23.JIANG Weiwei,LIU Yike,HAO Tianyao,et al.Comprehensive study of geology and geophysics of Sichuan Basin[J].Progress in Geophysics,2001,16(1):11-23.
    [10]马丽芳.中国地质图集[M].北京:地质出版社,2002:277-284.MA Lifang.Geological atlas of China[M].Beijing:Geological Publishing House,2002:277-284.
    [11]李本亮,孙岩,陈伟.川东层滑系统及其油气地质意义[J].石油与天然气地质,1998,19(3):244-247.LI Benliang,SUN Yan,CHEN Wei.Layer-slip systems in eastern Sichuan and the significance for petroleum geology[J].Oil&Gas Geology,1998,19(3):244-247.
    [12]司马立强,张树东,刘海洲,等.川东高陡构造陡翼主要构造特征及测井解释[J].天然气工业,1996,16(4):25-28.SIMA Liqiang,ZHANG Shudong,LIU Haizhou,et al.The main structural characteristics of high and steep structures in East Sichuan and logging interpretation of steep wing[J].Natural Gas Industry,1996,16(4):25-28.
    [13]吉人,吴胜,姜艳玲,等.川东地区高陡复杂构造LWD跟踪有效储层的方法[J].天然气工业,2014,32(2):1-6.JI Ren,WU Sheng,JIANG Yanling,et al.LWD technology of effectively tracing effective reservoirs in the high-steep complicated structrues in eastern Sichuan basin[J].Natural Gas Industry,2014,32(2):1-6.
    [14]雍杰.川东大池干井构造老井复查及勘探潜力研究[D].成都:西南石油大学地球科学与技术学院,2014:5-41.YONG Jie.Old well review and study of exploration potential of Dachiganjing structure in east Sichuan[D].Chengdu:Southwest Petroleum University.School of Geoscience and Technology,2014:5-41.
    [15]HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London A:Mathematical,Physical and Engineering Sciences.London,Britain:The Royal Society,1998:903-995.
    [16]HUANG N E,WU Zhaohua.A review on Hilbert-Huang transform:method and its applications to geophysical studies[J].Reviews of Geophysics,2008,46(2):RG2006-1-23.
    [17]HUANG N E,SHEN S S P.Interdisciplinary mathematical sciences:Hilbert–Huang transform and its applications[M].Hackensack:World Scientific,2005:107-127.
    [18]ZHAO Zhidong,ZHAO Zhijin,CHEN Yuquan.Time-frequency analysis of heart sound based on HHT(Hilbert–Huang Transform)[C]//Proceedings of International Conference on Communications,Circuits and Systems.Hong Kong,China:IEEE,2005:926-929.
    [19]WANG Yuqing,PENG Zhenming,He Yanmin.Instantaneous attributes analysis of seismic signals using improved HHT[J].Journal of Earth Science,2015,26(4):515-521.
    [20]ZENG Xiangyang,WANG Shuguang.Underwater sound classification based on Gammatone filter bank and HilbertHuang transform[C]//Signal Processing,Communications and Computing(ICSPCC)IEEE International Conference.Beijing,China:IEEE,2014:707-710.
    [21]李金铭.地电场与电法勘探[M].北京:地质出版社,2005:429-432.LI Jinming.Geoelectric field and electrical exploration[M].Beijing:Geological Publishing House,2005:429-432.
    [22]汤井田,何继善.可控源音频大地电磁法及其应用[M].长沙:中南大学出版社,2005:119-125.TANG Jingtian,HE Jishan.Controlled source audio-frequency magnetotellurics method its application[M].Changsha:Central South University Press,2005:119-125.
    [23]周茂军,周玉冰.可控源音频大地电磁法(CSAMT)的近场效应和近场校正[J].辽宁地质,1993(3):272-281.ZHOU Maojun,ZHOU Yubing.Near field effect and correction of control source audio-frequency magnetotelluric method[J].Liaoning Geology,1993(3):272-281.
    [24]詹少全,钱美平,冯戋戋.CSAMT全区视电阻率电场正演迭代拟合近场校正方法[J].物探与化探,2011,35(5):663-665.ZHAN Shaoquan,QIAN Meiping,FENG Jianjian.The CSAMT near-field correction method for electric field apparent resistivity forward iterative fitting[J].Geophysical&Geochemical Exploration,2011,35(5):663-665.
    [25]汤井田,何继善.水平电偶源频率测深中全区视电阻率定义的新方法[J].地球物理学报,1994,37(7):543-552.TANG Jingtian,HE Jishan.A new method to define the full-zone resistivity in horizontal electric dipole frequency sounding on a layered earth[J].Chinese Journal of Geophysics,1994,37(7):543-552.
    [26]冯兵,王珺璐,周祥文,等.CSAMT探测中电场Ex全区视电阻率定义及应用[J].煤田地质与勘探,2013,41(6):78-82.FENG bing,WANG Junlu,ZHOU Xiangwen,et al.Application of full-region apparent resistivity of CSAMT Ex in exploration[J].Coal Geology&Exploration,2013,41(6):78-82.
    [27]李鹤,李桐林,伍亮.CSAMT全区视电阻率转换及其效果分析[J].地球物理学进展,2015,30(2):889-893.LI He,LI Tonglin,WU liang.Transformation of all-time apparent resistivity of CSAMT and analysis of its effect[J].Progress in Geophysics,2015,30(2):889-893.
    [28]TORRES-VERDIN C,BOSTICK J F X.Principles of spatial surface electric field filtering in magnetotellurics:electromagnetic array profiling(EMAP)[J].Geophysics,1992,57(4):603-622.
    [29]黄兆辉,底青云,侯胜利.CSAMT的静态效应校正及应用[J].地球物理学进展,2006,21(4):1290-1295.HUANG Zhaohui,DI Qing yun,HOU Shengli.CSAMT static correction and its application[J].Progress in Geophysics,2006,21(4):1290-1295.
    [30]HAMDI H,QAUSAR A M,SRIGUTOMO W.CSAMT data processing with source effect and static corrections,application of Occam’s inversion,and its application in geothermal system[C]//6th Asian Physics Symposium,Journal of Physics:Conference Series.Bandung,Indonesia:IOP Publishing,2016:012057.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700