用户名: 密码: 验证码:
基于3D打印的柔性机械手研制及试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development and test of a flexible manipulator based on 3D printing
  • 作者:高国华 ; 董增雅 ; 孙晓娜 ; 王皓
  • 英文作者:Guohua Gao;Zengya Dong;Xiaona Sun;Hao Wang;College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology;
  • 关键词:柔性机械手 ; 3D打印 ; 运动学 ; 自适应 ; 接触力
  • 英文关键词:flexible manipulator;;3D printing;;kinematics;;self-adaptive function;;contact force
  • 中文刊名:ZHNY
  • 英文刊名:Smart Agriculture
  • 机构:北京工业大学机械工程与应用电子技术学院;
  • 出版日期:2019-01-31
  • 出版单位:智慧农业
  • 年:2019
  • 期:v.1;No.1
  • 基金:国家自然科学基金(51675011)
  • 语种:中文;
  • 页:ZHNY201901012
  • 页数:11
  • CN:01
  • ISSN:10-1552/S
  • 分类号:92-102
摘要
果实采摘是农业种植生产过程中最耗时费力的环节。为了实现果实的良好抓取,本研究设计了一款结构精简、具有自适应性的柔性机械手。该机械手由柔性手指、气动元件、手腕和底座组成,基于3D打印制作,装配简单。其中,气动元件和柔性手指由柔性材料TPU和PLA打印而成,手腕为具有柔性的一体件打印而成;利用气动元件的伸缩功能实现对手腕的驱动,带动柔性手指自适应变形抓取果实。结合常曲率变形和D-H坐标法建立了单手腕的运动学模型。在此基础上,进行了柔性机械手功能性验证试验和安全测试试验。试验结果表明,柔性机械手具有适应果实的形状进行自适应抓取的功能,对表皮较为脆弱的果实没有损伤;气动元件满足使用要求,可以完成对手腕的动作驱动。研究结果将为机械手柔性抓取结构的设计提供参考价值。
        With the development of computer and automation control technology, robots have gradually entered the field of agricultural production. The application of agricultural robots can improve labor productivity, product quality and working conditions, solve the problem of labor shortage, and promote the intellectualization of agricultural production process. Fruit harvesting is the most time-consuming and laborious part of agricultural production. Since the skin of fruit is relatively fragile, it is easy to cause damage in the process of grasping. Therefore, some flexibility is necessary for the grasping device. As the end of the picking, robot directly acts on the part of the grasping object, the manipulator has attracted more and more attention of scientific researchers because of its light weight, small size, low energy consumption, high flexibility and low cost. Manipulator is the core component of robot, which is installed on the end of picking robot and acting on the object directly. In order to improve universality and flexibility, reduce the damage to the fruits, and shorten the design cycle, the flexible manipulator with simple structure and self-adaptive function was designed to achieve favorable grasp of fruits. The manipulator developed based on 3D printing has the advantages of rapid prototyping, low experimental cost and easy to assemble, etc. Flexible manipulator consists of flexible finger, wrist, base and pneumatic components. Its general action process is opening, grasping, moveing and putting down.However, flexible manipulator combines the two processes of moving and putting down into swallowing, which reduces the execution of the motion and improves the grasping performance and efficiency of the manipulator. Pneumatic components and wrist were printed from flexible materials and the material is thermoplastic urethane and polylactic acid respectively. The wrist is an integral part with flexibility. The use of pneumatic components can achieve the wrist bending, driving flexible fingers self-adaptive deformation to grasp the fruit. The manipulator is placed on the vertical sliding platform of the four-wheel platform,which can move up and down, and the four-wheel platform can move freely in all directions. The single wrist has two rotational degrees of freedom. The kinematics model of single wrist was established by combining constant curvature deformation and D-H coordinate method. On this basis, the functional validation test and safety test of flexible manipulator were carried out. In the safety test, the thin pressure sensor was used as the detection element of the contact force signal between the finger and the grasping object. The experiment results show that the pneumatic components of the flexible manipulator meet the design requirements and the driving wrist is flexible. The manipulator has certain flexibility, and can adapt to the shape of the fruit for self-adaptive grasping. The self-adaptive grasping effect of the manipulator is remarkable, and the fruit skin is intact. Moreover,the flexible manipulator has a favorable self-adaptive function based on the structural design and the complexity of the control system is deduced. In addition, it will provide reference for the design of the flexible grasping mechanism.
引文
[1]杨光照.变约束连杆机构机械手的设计研究[D].无锡:江南大学,2016.Yang G.Design and study on flexible constraint linking mechanism robotic gripper[D].Wuxi:Jiangnan University,2016.
    [2]张凯良,杨丽,王粮局,等.高架草莓采摘机器人设计与试验[J].农业机械学报,2012,43(09):165-172.Zhang K,Yang L,Wang L,et al.Design and experiment of elevated substrate culture strawberry picking robot[J].Transactions of the Chinese Society of Agricultural Machinery,2012,43(09):165-172.
    [3]梁喜凤,苗香雯,崔绍荣,等.果实采摘机械手机构设计与工作性能分析[J].农机化研究,2004(02):133-135,139.Liang X,Miao X,Cui S,et al.Design and realization of merit system online[J].Journal of Agricultural Mechanization Research,2004(02):133-135,139.
    [4]李海英.发展农业机械化提高劳动生产效率[J].吉林农业,2015(19):55.Li H.Developing agricultural mechanization and improving labor production efficiency[J].Jilin Agriculture,2015(19):55.
    [5]Kondo N,Ting K.Robotics for plant pro duction[J].Artificial Intelligence Review,1998,12(1-3):227-243.
    [6]Yasukawa S,Li B,Sonoda T,et al.Development of a tomato harvesting robot[C]//The 2017 International Conference on ArtificialLife and Robotics,2017:408-411.
    [7]Yaguchi H,Nagahama K,Hasegwa T,et al.Development of an autonomous tomato harvesting robot with rotational plucking gripper[C].IEEE/RSJ International Conference on Intelligent Robot and Systems,2016:652-657.
    [8]Vitzrabin E,Edan Y.Changing task objectives for improved sweet pepper detection for robotic harvesting[J].Robotics and Automation Letters,2016,1(1):578-584.
    [9]周增产,Bontsema J,Van Kollenburg-Crisan L.荷兰黄瓜收获机器人的研究开发[J].农业工程学报,2001,17(06):77-80.Zhou Z,Bontsema J,Van Kollenburg-Crisan L.Development of cucumber harvesting robot in Netherlands[J].Transactions of the Chinese Society of Agricultural Engineering,2001,17(06):77-80.
    [10]Van Henten E J,Van Tuijl B J A,Hemminget J,et al.An autonomous robot for harvesting cucumbers in green houses[J].Autonomous Robots,2002,13(3):241-258.
    [12]Shigehiko Hayashi. Evaluation of a strawberry-harvesting robot in a field test[J]. Biosystems Engineering, 2010,105:160-171.
    [13]Bac C W,Roorda T,Reshef R,et al.Analysis of a motion planning problem for sweet-pepper harvesting in a dense obstacle environment[J].Biosystems Engineering,2016,146:85-97.
    [14]Eizentls P,Oka K.3D pose estimation of green pepper fruit for automated harvesting[J].Computers and Electronics in Agriculture,2016,128:127-140.
    [15]Zhao Y,Gong L,Liu C,et al.Dual-arm robot design and testing for harvesting tomato in greenhouse[J].International Federation of Accountants,2016,49(16):161-165.
    [16]李长勇,房爱青,谭红,等.高架草莓采摘机器人系统研究[J].机械设计与制造,2017(06):245-247,251.Li C,Fang A,Tan H,et al.Elevated strawberry picking robot system research[J].Machinery Design and Manufacture,2017(06):245-247,251.
    [17]刘祚时,王亚平,吴翠琴.脐橙采摘机器人快速视觉定位系统研究[J].江西理工大学学报,2014(3):68-72.Liu Z,Wang Y,Wu C.Study on the fast vision positioning system in the robot picking navel oranges[J].Journal of Jiangxi University of Science and Technology.2014(3):68-72.
    [18]熊俊涛,叶敏,邹湘军,等.多类型水果采摘机器人系统设计与性能分析[J].农业机械学报,2013,44(s1):230-235.Xiong J,Ye M,Zou X,et al.System design and performance analysis on multi-type fruit harvesting robot[J].Transactions of the Chinese Society of Agricultural Machinery,2013,44(s1):230-235.
    [19]李秦川,胡挺,武传宇,等.果蔬采摘机器人末端执行Shigehiko Hayashi.Evaluation of a strawberry-harvesting robot in a field test[J].Biosystems Engineering,2010,105:160-171.
    [11]Van Henten E J,Hemming J,Van Tuijl B J A,et al.Collision-free motion planning for a cucumber picking robot[J].Biosystems Engineering,2003,86(2):135-144.器研究综述[J].农业机械学报,2008(03):175-179,186.Li Q,Hu T,Wu C,et al.Review of end-effectors in fruit and vegetable harvesting robot[J].Transactions of the Chinese Society for Agricultural Machinery,2008(03):175-179,186.
    [20]Noritsugu T,Kubota M,Yoshimatsu S.Development of pneumatic rotary soft actuator made of silicone rubber[J].Journal of Robotics and Mechatronics,2001,13(1):17-22.
    [21]钱少明.基于FPA的多指机械手及其在果实采摘中的应用研究[D].浙江工业大学.Qian S.Research on multi-fingered robot hand based on the flexible pneumtatic actuator FPA and its application in fruit picking[D].Zhejiang University of Technology.
    [22]鲍官军,高峰,荀一,等.气动柔性末端执行器设计及其抓持模型研究[J].农业工程学报,2009,25(10):121-126.Bao G,Gao F,Xun Y,et al.Flexible end-effector based on flexible pneumatic actuator and its grasping model[J].Transactions of the Chinese Soci ety of Agricultural Engineering,2009,25(10):121-126.
    [23]徐淼鑫.气压驱动软体夹持装置研究[D].南京:南京理工大学,2015.Xu M.Study of pneumatic drive in soft finger device[D].Nanjing:Nanjing University Of Science And Technology,2015.
    [24]徐淼鑫,李小宁,郭钟华.新型柔性夹持装置软体手指的数学模型研究[J].机械制造与自动化,2016,45(05):99-102.Xu M,Li X,Guo Z.Study of mathematical model of soft finger in new flexible gripper[J].Machine Building and Automation,2016,45(05):99-102.
    [25]金波,林龙贤.果蔬采摘欠驱动机械手爪设计及其力控制[J].机械工程学报,2014,50(19):1-8.Jin B,Lin L.Design and force control of an underactuated robotic hand for fruit and vegetable picking[J].Journal of Mechanical Engineering.2014,50(19):1-8.
    [26]TelegenovK,Tlegenov Y,Shintemirov A.A low-cost opensource 3-D-printed three-finger gripper platform for research and educational purposes[C]//IEEE Access,v3,2015:638-647.
    [27]Mutlu R,Tawk C,Alici G,et al.A 3D printed monolithic soft gripper with adjustable stiffness[C]//IECON 2017,Conference of the IEEE Industrial Electronics Society.IEEE,2017:6235-6240.
    [28]Anver H M C M,Mutlu R,Alici G.3D printing of a thin-wall soft and monolithic gripper using fused filament fabrication[C]//IEEE International Conference on Advanced Intelligent Mechatronics.IEEE,2017:442-447.
    [29]陆叶.基于3D打印和Arduino的单臂轮式机器人的设计[J].机械制造与自动化,2017,46(03):168-171.Lu Y.Design of Single Arm-wheeled Robot Based on3D Printing and Arduino[J].Machine Building and Automation,2017,46(03):168-171.
    [30]傅思程,吴静漪,陈中柘.基于3D打印技术的仿人机械手的设计及简易实现[J].工业控制计算机,2018,31(01):39-40.Fu S,Wu J,Chen Z.Design and Simply Implementation of Manipulator Based on 3D Printing Technology[J].Industrial Control Computer,2018,31(01):39-40.
    [31]马怀振,张家梁,封莹.3D打印末端夹持器的设计[J].机械设计与制造,2018(11):171-174.Ma H,Zhang J,Feng Y.Design of the 3D printing terminal gripper[J].Machinery Design and Manufacture,2018(11):171-174.
    [32]Wang Z,Chathuranga D S,Hirai S.3D printed soft gripper for automatic lunch box packing[C]//IEEE International Conference on Robotics and Biomimetics.IEEE,2017:503-508.
    [33]Yang Y,Chen Y.Novel design and 3D printing of variable stiffness robotic fingers based on shape memory polymer[C]//IEEE InternationalConference on Biomedical Robotics and Biomechatronics.IEEE,2016:195-200.
    [34]Zhang H,Wang M,Chen F,et al.Design and development of a soft gripper with topology optimization[C]//Ieee/rsj International Conference on Intelligent Robots and Systems.IEEE,2017:6239-6244.
    [35]Udupa G,Sreedharan P,Dinesh P S,et al.Asymmetric bellow flexible pneumatic actuator for miniature robotic soft gripper[J].Journal of Robotics,2014,2014:1-11.
    [36]Bilodeau R A,White E L,Kramer R K.Monolithic fabrication of sensors and actuators in a soft robotic gripper[C]//Ieee/rsj International Conference on Intelligent Robots and Systems.IEEE,2015:2324-2329.
    [37]孙伏.机械手D-H坐标系建立分析[J].陕西理工学院学报(自然科学版),2016,32(6):24-28.Sun F.Building D-H coordinate system analysis to robots[J].Journal of Shaanxi University of Technology(Natural Science Edition),2016,32(6):24-28.
    [38]高国华,任晗,王皓,等.热塑性聚氨酯材料柔性外壳3D打印技术[J].北京工业大学学报,2018,44(04):497-506.Gao G,Ren H,Wang H,et al.Study on 3D printing technology for TPU flexible shell[J].Journal of Beijing University of Technology,2018,44(04):497-506.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700