用户名: 密码: 验证码:
液相脱合金法制备PtCo合金低铂催化剂及性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Pt Co alloy low platinum catalysts by liquid phase deposition and its properties
  • 作者:李心成 ; 刘阳 ; 王芳辉
  • 英文作者:LI Xin-cheng;LIU Yang;WANG Fang-hui;Linxian High School;Department of Organic Chemistry,College of Science,Beijing University of Chemical Technology;
  • 关键词:液相脱合金 ; Pt ; Co合金 ; 核壳型催化剂 ; 电化学性能
  • 英文关键词:Liquid phase alloying;;Pt Co alloy;;Core-shell type catalyst;;Electrochemical performance
  • 中文刊名:HELJ
  • 英文刊名:Heilongjiang Science
  • 机构:临县高级中学;北京化工大学理学院有机化学系;
  • 出版日期:2018-01-08
  • 出版单位:黑龙江科学
  • 年:2018
  • 期:v.9;No.116
  • 基金:国家自然科学基金“燃料电池用原子排布有序化核壳型催化剂制备及构效关系研究”(21376022)
  • 语种:中文;
  • 页:HELJ201801018
  • 页数:4
  • CN:01
  • ISSN:23-1560/G3
  • 分类号:49-51+58
摘要
为了提高Pt的利用率,采用液相脱合金法将Pt-Co合金进行脱合金处理,然后对脱合金后的催化剂进行煅烧。采用XRD、EDS、TEM以及CV和LSV对催化剂的结构和电化学性能进行表征和测试。结果显示:液相脱合金可有效去除Pt Co合金表层的非铂金属,经煅烧后可形成以Pt Co合金为核,Pt为壳的核壳型催化剂,催化剂煅烧后的电化学性能明显提高。通过液相脱合金对催化剂进行结构优化,可减少催化剂中非贵金属离子在酸性电解质溶液中的流失及流失金属离子对膜材料的损伤,提高催化剂的稳定性,延长电池整体寿命。
        In order to improve the utilization of Pt,the Pt-Co alloy was de-alloyed by liquid-phase alloying method and then the de-alloyed catalyst was calcined. The structure and electrochemical properties of the catalysts were characterized and tested by XRD,EDS,TEM,CV and LSV. The results show that the liquid phase alloy can effectively remove the non-platinum metal on the surface of Pt Co alloy. After calcination,the core-shell catalyst with Pt Co alloy as core and Pt shell can be formed. The electrochemical performance of the catalyst after calcination is obviously improved. The structure optimization of the catalyst by liquid phase alloying can reduce the loss of the non-precious metal ions in the acidic electrolyte solution and the loss of metal ions on the membrane material,improve the stability of the catalyst and prolong the overall battery life.
引文
[1]Islam M T,Shahir S A,Uddin T M I,et al.Current energy scenario and future prospect of renewable energy in Bangladesh[J].Renewable and Sustainable Energy Reviews,2014,(39):1074-1088.
    [2]Graedel T E,Crutzen P J.The changing atmosphere[J].Scientific American,1989:58-68.
    [3]Von Blottnitz H,Curran M A.A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy,greenhouse gas,and environmental life cycle perspective[J].Journal of cleaner production,2007,15(07):607-619.
    [4]Godin-Beekmann S.Stratospheric and Tropospheric Ozone[J].The International Encyclopedia of Geography,2017.
    [5]Green M A,Emery K,Hishikawa Y,et al.Solar cell efficiency tables(version 49)[J].Progress in photovoltaics:research and applications,2017,25(01):3-13.
    [6]Raccichini R,Varzi A,Wei D,et al.Critical Insight into the Relentless Progression Toward Graphene and Graphene-Containing Materials for Lithium-Ion Battery Anodes[J].Advanced Materials,2017,29(11).
    [7]Ogawa T.Fuel cell system:U.S.Patent 9,537,193[P].2017-01-03.
    [8]梅艳,贾曦,刘世斌.直接甲醇燃料电池阴极催化剂的研究进展[J].山东化工,2015,(44):42-48
    [9]Scofield M E,Liu H,Wong S S.A concise guide to sustainable PEMFCs:recent advances in improving both oxygen reduction catalysts and proton exchange membranes[J].Chemical Society Reviews,2015,44(16):5836-5860.
    [10]Lin X,Zheng L,Gao G,et al.Electrochemiluminescence imagingbased high-throughput screening platform for electrocatalysts used in fuel cells[J].Analytical chemistry,2012,84(18):7700-7707.
    [11]Wang D,Xin H.L,Yu Y,Wang H,Rus E,Muller D.A,Abruna H.D.Pt-Decorated Pd Co@Pd/C Core-Shell Nanoparticles with Enhanced Stability and Electrocatalytic Activity for the Oxygen Reduction Reaction[J].J.Am.Chem.Soc.,2010,(132):17664-17666.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700