用户名: 密码: 验证码:
波动光下棉花叶片比叶重对光合生产能力的调控
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Leaf mass per area regulates photosynthetic production capacity of cotton under fluctuating light
  • 作者:王婧璇 ; 雷长英 ; 张玉洁 ; 韩吉梅 ; 张亚黎
  • 英文作者:Wang Jingxuan;Lei Zhangying;Zhang Yujie;Han Jimei;Zhang Yali;College of Agriculture,Shihezi University/The Key Laboratory of Oasis Eco-agriculture of Xinjiang Production and Construction Corps;
  • 关键词:波动光 ; 棉花 ; 光合能力 ; 比叶重
  • 英文关键词:fluctuating light;;cotton;;photosynthetic capacity;;leaf mass per area(LMA)
  • 中文刊名:SHZN
  • 英文刊名:Journal of Shihezi University(Natural Science)
  • 机构:石河子大学农学院/新疆生产建设兵团绿洲生态农业重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:石河子大学学报(自然科学版)
  • 年:2019
  • 期:v.37
  • 基金:国家自然科学基金地区基金(31860355);; 新疆兵团高等学校优秀青年教师项目(CZ027201)
  • 语种:中文;
  • 页:SHZN201903003
  • 页数:5
  • CN:03
  • ISSN:65-1174/N
  • 分类号:23-27
摘要
为探究棉花在波动光下生长特性和光合能力的变化,在室内模拟波动光条件下,测定了叶片的气体交换参数、比叶重(LMA),叶片厚度(LT)、叶片面积(LA)、生物量的变化。研究结果表明:与恒定光下生长的植株相比,波动光下生长的棉花叶片比叶重,单叶面积和生物量均显著降低。恒定光处理下单位叶片面积净光合速率(A)显著高于波动光条件下的叶片,但不同光处理下单位叶片质量净光合速率(A_(mass))无明显差异。因此,波动光下叶片LMA的降低是棉花叶片光合能力下降的主要原因。
        In order to explore the changes of growth characteristics and photosynthetic capacity of cotton under fluctuating light conditions,the changes of leaf gas exchange parameters,leaf mass per area( LMA),leaf thickness( LT),leaf area( LA) and biomass were measured under the simulated fluctuating light conditions. The results showed that compared with the plants growing under constant light,leaf mass per area,the single leaf area and biomass of cottons were significantly lower under fluctuating light. Net photosynthetic rate( A) per unit leaf area under constant light treatment was significantly higher than leaves under fluctuating light conditions,but there was no difference in net photosynthetic rate (A_(mass)) per unit leaf mass under different light treatments.According to this study,the photosynthetic capacity of cotton was reduced by fluctuating light,leading to the production of photosynthetic substances capacity reduced,and leaf mass per area reduced to control its photosynthetic capacity under fluctuating light.
引文
[1]Smith K W K.Effect of water stress on stomatal and photosynthetic responses in subalpine plants to cloud patterns[J].American Journal of Botany,1988,75(6):851-858.
    [2]Pearcy R W.Sunflecks and photosynthesis in plant canopies[J].Annual Review of Plant Physiology,1990,41(1):421-453.
    [3]Chazdon R L,Pearcy R W.The importance of sunflecks for forest understory plants:photosynthetic machinery appears adapted to brief,unpredictable periods of radiation[J].Bioscience,1991,41(11):760-766.
    [4]Athanasiou K,Dyson B C,Webster R E,et al.Dynamic acclimation of photosynthesis increases plant fitness in changing environments[J].Plant Physiology,2010,152(1):366-373.
    [5]Kono M,Terashima I.Long-term and short-term responses of the photosynthetic electron transport to fluctuating light[J].Journal of Photochemistry and Photobiology B:Biology,2014,137:89-99.
    [6]Retkute R,Smith-Unna S E,Smith R W,et al.Exploiting heterogeneous environments:does photosynthetic acclimation optimize carbon gain in fluctuating light?[J].Journal of Experimental Botany,2015,66(9):2437-2447.
    [7]Watling J R,Ball M C,Woodrow I E.The utilization of lightflecks for growth in four Austalian rainforest species[J].Functional Ecology,1997,11(2):231-239.
    [8]Leakey A D B,Press M C,Scholes J D.Patterns of dynamic irradiance affect the photosynthetic capacity and growth of dipterocarp tree seedlings[J].Oecologia,2003,135(2):184-193.
    [9]Zheng Y B,Theo B,Mike D.Moving lamps increase leaf photosynthetic capacity but not the growth of potted gerbera[J].Scientia Horticulturae,2006,107(4):380-385.
    [10]Alter P,Dreissen A,Luo F L,et al.Acclimatory responses of Arabidopsis to fluctuating light environment:comparison of different sunfleck regimes and accessions[J].Photosynthesis Research,2012,113(1-3):221-237.
    [11]Kubasek J,Urban O,Santrucek J.C4 plants use fluctuating light less efficiently than do C3 plants:a study of growth,photosynthesis and carbon isotope discrimination[J].Physiol Plant,2013,149(4):528-539.
    [12]Vialet-Chabrand S,Matthews J S A,Simkin A J,et al.Importance of fluctuations in light on plant photosynthetic acclimation[J].Plant Physiology,2017,173(4):2163-2179.
    [13]Kaiser E,Matsubara S,Harbinson J,et al.Acclimation of photosynthesis to lightflecks in tomato leaves:interaction with progressive shading in a growing canopy[J].Physiologia Plantarum,2017,162(4).
    [14]Cao W X,Tibbitts T W.Growth and carbon assimilation in potato plants as affected by light fluctuations[J].Hortscience A Publication of the American Society for Horticultural Science,1993,28(7):748.
    [15]Yamori,Wataru.Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress[J].Journal of Plant Research,2016,129(3):379-395.
    [16]Autio J,Voipio I.Growth of leaf lettuce under fluctuating light conditions.Acta Hort,1997,435(1):193-199.
    [17]Pearcy R W.Sunfleck frequency and duration affects growth rate of the understorey plant,Alocasia macrorrhiza[J].Functional Ecology,1993,7(6):683-689
    [18]Yin Z H,Johnson G N.Photosynthetic acclimation of higher plants to growth in fluctuating light environments[J].Photosynthesis Research,2000,63(1):97-107.
    [19]Leakey A D B,Press M C,Scholes J D,et al.Relative enhancement of photosynthesis and growth at elevated CO2is greater under sunflecks than uniform irradiance in a tropical rain forest tree seedling[J].Plant,Cell&Environment,2002,25(12):1701-1714.
    [20]Bailey S,Walters R G,Horton J P.Acclimation of Arabidopsis thaliana to the light environment:the existence of separate low light and high light responses[J].Planta,2001,213(5):794-801.
    [21]Singsaas E L,Delucia O E H.Variation in measured values of photosynthetic quantum yield in ecophysiological studies[J].Oecologia,2001,128(1):15-23.
    [22]Wright I J,Reich P B,Westoby M,et al.The worldwide leaf economics spectrum[J].Nature,2004,428(6985):821.
    [23]Scafaro A P,Caemmerer S V,Evans J R,et al.Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness[J].Plant Cell&Environment,2011,34(11):1999-2008.
    [24]Terashima I,Hanba Y T,Danny Tholen,et al.Leaf functional anatomy in relation to photosynthesis[J].Plant Physiology,2011,155(1):108-116.
    [25]Niinemets U,Portsmuth A,Tena D,et al.Do we underestimate the importance of leaf size in plant economics?Disproportional scaling of support costs within the spectrum of leaf physiognomy[J].Annals of Botany,2007,100(2):283-303.
    [26]Lusk C H,Reich P B,Montgomery R A,et al.Why are evergreen leaves so contrary about shade?[J].Trends in E-cology and Evolution,2008,23(6):0-303.
    [27]Coble A P,Cavaleri M A.Light acclimation optimizes leaf functional traits despite height-related constraints in a canopy shading experiment[J].Oecologia,2015,177(4):1131-1143.
    [28]Matsubara S.Growing plants in fluctuating environments:why bother?[J].Journal of Experimental Botany,2018,69(20):4651-4654.
    [29]lo Niinemets,Sack L.Structural determinants of leaf light-harvesting capacity and photosynthetic potentials[M].Progress in Botany.Springer Berlin Heidelberg,2006,67(1):385-419.
    [30]Hassiotou F,Renton M,Ludwig M,et al.Photosynthesis at an extreme end of the leaf trait spectrum:how does it relate to high leaf dry mass per area and associated structural parameters?[J].Journal of Experimental Botany,2010,61(11):3015-3028.
    [31]Witkowski E T F,Lamont B B.Leaf specific mass confounds leaf density and thickness[J].Oecologia,1991,88(4):486-493.
    [32]Castro-Díez P,Puyravaud J P,Cornelissen J H C.Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types[J].Oecologia,2000,124(4):476-486.
    [33]Poorter H,lo Niinemets,Poorter L,et al.Causes and consequences of variation in leaf mass per area(LMA):a meta-analysis[J].New Phytologist,2009,182(3):565-588.
    [34]Murphy M R C,Jordan G J,Brodribb T J.Differential leaf expansion can enable hydraulic acclimation to sun and shade[J].Plant,Cell and Environment,2012,35(8):1407-1418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700