用户名: 密码: 验证码:
没食子酸对锡电解精炼过程的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of gallic acid on tin electrorefining process
  • 作者:徐志峰 ; 李柱 ; 路永锁 ; 宁建平 ; 钟晓聪 ; 李金辉 ; 詹有北
  • 英文作者:XU Zhi-feng;LI Zhu;LU Yong-suo;NING Jian-ping;ZHONG Xiao-cong;LI Jin-hui;ZHAN You-bei;School of Metallurgical Engineering, Jiangxi University of Science and Technology;Technology Center, Jiangxi Self-Independence Environment Protection Science and Technology Ltd.;
  • 关键词:锡电解精炼 ; 甲酚磺酸 ; 没食子酸 ; 木质素磺酸钠 ; 稳定性 ; 形貌
  • 英文关键词:tin electrorefining;;cresol sulfonic acid;;gallic acid;;sodium ligninsulfonate;;stability;;morphology
  • 中文刊名:ZYXZ
  • 英文刊名:The Chinese Journal of Nonferrous Metals
  • 机构:江西理工大学冶金工程学院;江西自立环保科技有限公司企业技术中心;
  • 出版日期:2019-05-15
  • 出版单位:中国有色金属学报
  • 年:2019
  • 期:v.29;No.242
  • 基金:国家自然科学基金资助项目(51704130);; 江西理工大学博士启动基金资助项目(jxxjbs16026);; 江西自立环保科技有限公司横向项目(2017-3607-09-000002)~~
  • 语种:中文;
  • 页:ZYXZ201905020
  • 页数:8
  • CN:05
  • ISSN:43-1238/TG
  • 分类号:185-192
摘要
传统锡电解精炼采用H_2SO_4-SnSO_4~-甲酚磺酸电解液体系,然而,甲酚磺酸气味重、有毒有害,亟待寻找新型绿色环保添加剂替代甲酚磺酸。通过线性扫描、Tafel测试、滴定分析和扫描电子显微镜对比研究了甲酚磺酸和没食子酸对电解液稳定性和Sn(Ⅱ)阴极沉积行为的影响。结果表明:没食子酸的还原性强于甲酚磺酸的还原性,显著抑制析氢副反应。添加没食子酸可以使电解液酸度维持稳定,而且Sn(Ⅱ)浓度和Sn(Ⅱ)占总锡(S(T))比例保持在较高水平。相较于甲酚磺酸,没食子酸更有利于提高电解液稳定性。甲酚磺酸显著阻滞Sn(Ⅱ)的沉积,增强阴极极化,阴极锡致密平整,甲酚磺酸平整效果好。然而,没食子酸对Sn(Ⅱ)沉积动力学影响小,其阴极锡平整度、致密度低于甲酚磺酸体系的,添加高浓度没食子酸甚至会导致锡枝晶产生。木质素磺酸钠作为一种整平剂,与没食子酸复合添加可以显著改善阴极锡的平整度和致密度,两者组成的复合添加剂有望取代甲酚磺酸成为新型锡电解精炼电解液绿色添加剂。
        Traditional tin electrorefining proceeds in electrolyte containing H_2SO_4, SnSO_4 and cresol sulfonic acid(CSA).It is urgent to search novel environmental electrolyte additive to replace CSA due to its stench and toxicity. Influences of CSA and gallic acid(GA) on electrolyte stability and Sn(Ⅱ) electrodeposit behavior were comparatively investigated through linear scanning voltammetry, Tafel test, titration analysis and SEM. The results show that GA presents stronger reducibility than that CSA does, and remarkably inhibits hydrogen evolution side reaction. Addition of GA stabilizes electrolyte acidity, and enhances Sn(Ⅱ) concentration and Sn(Ⅱ)/Sn(T) ratio. Compared with CSA, GA is more suitable to enhance electrolyte stability. Addition of CSA apparently inhibits Sn(Ⅱ) electrodeposition and increases cathodic polarization. Therefore, CSA presents excellent flattening effect. However, GA shows smaller influence on Sn(Ⅱ)electrodeposition dynamic, and decreases the flatness and compactness of cathodic tin. Moreover, addition of GA in high concentration results in the appearance of tin dendrites. Sodium ligninsulfonate(SL), as a leveling agent, is selected and combined with GA. Composite additive of SL and GA is demonstrated to improve compactness and flatness of cathodic tin. Consequently, SL-GA composite additive is a potential alternative to CAS. It could be a novel environmental-friendly additive for tin electrorefining.
引文
[1]彭天照,徐非凡.粗锡精炼现状及前景展望[J].有色冶金设计与研究,2016,37(5):30-32.PENG Tian-zhao,XU Fei-fan.Present situation and prospect of crude tin refining[J].Nonferrous Metals Engineering&Research,2016,37(5):30-32.
    [2]HARANGI Z,KULCSáR T,KéKESI T.Hydrometallurgical processing of anode slimes obtained from the electrolytic refining of soldering scrap[J].Materials Science and Engineering,2015,40(1):64-74.
    [3]KULCSAR T,TOTH G B,KEKESI T.Complex evaluation and development of electrolytic tin refining in acidic chloride media for processing tin-based scrap from lead-free soldering[J].Mineral Processing and Extractive Metallurgy,2016,125(4):228-237.
    [4]SABA A E,AFIFI S E,EL SHERIEF A E.Developments in alkaline tin electrorefining[J].Journal of the Minerals,Metals and Materials Society,1988,40(8):40-43.
    [5]DOBO Z,KULCSáR T,KéKESI T.Electrorefining of tin in pure acid solutions by mechanically controlled cathode deposition and solar power utilization[J].Materials Science and Engineering,2012,37(2):19-26.
    [6]于海燕,梁成浩,王兵.甲基磺酸盐镀液体系可焊性合金镀层的工艺[J].中国有色金属学报,2001,11(s1):202-205.YU Hai-yan,LIANG Cheng-hao,WANG Bing.Electroplating processes of solderable coatings from methane surfonate bath[J].The Chinese Journal of Nonferrous Metals,2001,11(s1):202-205.
    [7]BRUBAKER C H Jr.The hydrolysis of tin(IV)in sulfuric acid[J].Journal of the American Chemical Society,1955,77(20):5265-5268.
    [8]LAITINEN T,SALMI K,SUNDHOLM G,VIINIKKA P,YLI-PENTTI A.The anodic behaviour of tin in sulphuric acid solutions[J].Electrochimica Acta,1992,37(10):1797-1803.
    [9]KEKESI T.Electrorefining in aqueous chloride media for recovering tin from waste materials[J].Acta Metallurgica Slovaca,2013,19(3):196-205.
    [10]XIAO F,SHEN X,REN F,REN F,VOLINSKY A.Additive effects on tin electrodepositing in acid sulfate electrolytes[J].International Journal of Minerals,Metallurgy,and Materials,2013,20(5):472-478.
    [11]LEI J,YANG J.Electrochemical mechanism of tin membrane electrodeposition in chloride solutions[J].Journal of Chemical Technology and Biotechnology,2017,92(4):861-867.
    [12]SON S H,PARK S C,KIM J H,KIM Y H,LEE M S,AHN J.Study on the electro-refining of tin in acid solution from electronic waste[J].Archives of Metallurgy and Materials,2015,60(2):1217-1220.
    [13]TóTH G B,UCHIKOSHI M,KéKESI T.Polarization characteristics of tin electrorefining in chloride solutions[J].Materials Science and Engineering,2014,39(2):103-113.
    [14]RIMASZEKI G,KULCSAR T,KEKESI T.Investigation and optimization of tin electrorefining in hydrochloric acid solutions[J].Journal of Applied Electrochemistry,2012,42(8):573-584.
    [15]GHOSH S,ROY S.Characterization of tin films synthesized from ethaline deep eutectic solvent[J].Materials Science and Engineering B,2014,190:104-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700