用户名: 密码: 验证码:
法国梧桐叶片炭和枝条炭对水中Pb~(2+)的吸附特性影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Biochars Derived from Platanus Orientalis Branches and Leaves on the Adsorption of Pb~(2+) in Aqueous Solution
  • 作者:温尔刚 ; 赵伟宁 ; 杨兴 ; 郭佳 ; 秦华 ; 王海龙
  • 英文作者:WEN Ergang;ZHAO Weining;YANG Xing;GUO Jia;QIN Hua;WANG Hailong;School of Environmental and Resource Sciences, Zhejiang A&F University;Agricultural Bureau of Luoning County;Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province;Biochar Engineering Technology Research Center of Guangdong Province, Foshan University;Chengbang Eco-Environment Co., Ltd.;
  • 关键词:生物质炭 ; 园林废弃物 ; 重金属 ; 吸附 ; 污染水体
  • 英文关键词:biochar;;green waste;;heavy metals;;adsorption;;waste water
  • 中文刊名:TRQS
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:浙江农林大学环境与资源学院;河南省洛宁县农业局;浙江省土壤污染生物修复重点实验室;佛山科学技术学院广东省生物炭工程技术研究中心;诚邦生态环境股份有限公司;
  • 出版日期:2019-04-15
  • 出版单位:水土保持学报
  • 年:2019
  • 期:v.33;No.161
  • 基金:国家自然科学基金面上项目(21577131,21876027);; 广东省自然科学基金重点项目(2017A030311019);; 浙江省自然科学基金重点项目(LZ15D010001)
  • 语种:中文;
  • 页:TRQS201902047
  • 页数:8
  • CN:02
  • ISSN:61-1362/TV
  • 分类号:311-318
摘要
以法国梧桐叶片和枝条为原料在500℃下通过限氧裂解法制成生物质炭,进而采用批量吸附法探究了不同溶液初始pH、吸附时间、溶液初始Pb~(2+)浓度对生物质炭吸附效果的影响,并通过拟合吸附动力学曲线和吸附等温线方法初步研究吸附机理。结果表明,与法国梧桐枝条炭相比,叶片炭矿质元素组成相对较为复杂,官能团种类较丰富。2种生物质炭均在吸附时间为24 h时、初始pH为5时达到最大吸附量,叶片炭的最大吸附量比法国梧桐枝条炭高25.6%。2种生物质炭的动力学吸附过程均符合准二级动力学方程,表明吸附速率主要受化学因素控制;2种生物质炭的吸附等温线更符合Langmuir模型,吸附以单分子层为主,也存在层间扩散的多分子层吸附。综上所述,2种生物质炭均能较好地吸附水溶液中的Pb~(2+),叶片炭的吸附效果比枝条炭更明显,在实际生产中可以将法国梧桐修剪枝和落叶炭化后用于铅污染水体修复。
        In the present study, two biochars derived from Platanus orientalis Linn branches and leaves respectively were prepared by pyrolysis at the temperature of 500 ℃ under the oxygen-limited condition. The batch equilibration method was used to determine the effects of different factors, such as contact time, initial Pb~(2+) concentration and initial solution pH on Pb~(2+) adsorption capacity on the biochars. The characteristics of adsorption isotherms and adsorption kinetics were analyzed to reveal associated mechanisms. The results showed that the mineral elements and functional groups were more abundant in the leaf biochar than those in the branch biochar. The maximum adsorption of Pb~(2+) on both biochars occurred at the initial pH 5 after 24 hours, and the adsorption capacity of the leaf biochar was 25.6% greater than that of the branch biochar. The adsorption of Pb~(2+)could be described well by the pseudo-second-order kinetics, indicating that the adsorption process was mainly controlled by precipitation. The adsorption isotherms demonstrated that the adsorption of Pb~(2+) to the biochars fitted Langmuir model better than Freundlich model. Therefore, monolayer adsorption was proposed as the dominant adsorption process, although the multilayer adsorption was also present. In conclusion, both biochars had good capacity for adsorption of Pb~(2+) in water, and the leaf biochar was more effective than the branch biochar.
引文
[1] 陈炳卿,孙长颢.食品污染与健康[M].北京:化学工业出版社,2002.
    [2] 姜楠,王鹤立,廉新颖.地下水铅污染修复技术应用与研究进展[J].环境科学与技术,2008,31(2):56-60.
    [3] 楼蔓藤,秦俊法,李增禧,等.中国铅污染的调查研究[J].广东微量元素科学,2012,19(10):15-34.
    [4] 廖爱民.我国铅火法冶炼技术现状及进展研究[J].世界有色金属,2018(1):3-5.
    [5] Wang H, Gao B, Wang S, et al. Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood[J].Bioresource Technology,2015,197:356-362.
    [6] 陈再明,万还,徐义亮,等.水稻秸秆生物碳对重金属Pb2+的吸附作用及影响因素[J].环境科学学报,2012,32(4):769-776.
    [7] 朱俊民,王兆炜,高俊红,等.蔬菜废弃物基生物炭对铅的吸附特性[J].安全与环境学报,2017,17(1):232-239.
    [8] 张连科,刘心宇,王维大,等.油料作物秸秆生物炭对水体中铅离子的吸附特性与机制[J].农业工程学报,2018,34(7):218-226.
    [9] 赵保卫,石夏颖,马锋锋.胡麻和油菜生物质炭吸附Cu(Ⅱ)的影响因素及其机制[J].中国科技论文,2015(24):2888-2893.
    [10] 唐登勇,胡洁丽,胥瑞晨,等.芦苇生物炭对水中铅的吸附特性[J].环境化学,2017,36(9):1987-1996.
    [11] 王芳,李洪远.绿化废弃物资源化利用与前景展望[J].中国发展,2014,14(1):5-11.
    [12] 吴道军,田立超,何薇,等.园林废弃物资源化应用现状及前景[J].绿色科技,2017(23):88-89.
    [13] 孙健,罗文邃,汪洋.园林植物废弃物资源化利用现状与展望[C].中国环境科学学会.2013中国环境科学学会学术年会论文集(5卷),2013:5387-5392.
    [14] 高凯芳.原材料和温度对生物炭的理化特性及镉吸附能力的影响研究[D].南昌:江西师范大学,2016.
    [15] 汲广云,郭明,杨兴,等.巯基硅烷改性多壁碳纳米管的合成及其对Cd2+的吸附性能研究[J].环境科学学报,2017,37(6):2171-2180.
    [16] 樊伟,卞战强,田向红,等.巯基硅烷改性氧化石墨对砷的吸附性能[J].环境化学,2013,32(5):810-818.
    [17] Yang X, Liu J, Mcgrouther K, et al. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil[J].Environmental Science and Pollution Research,2016,23(2):974-984.
    [18] 潘萌娇.燕山山脉木材热裂解规律及生物质油特性实验研究[D].天津:河北工业大学,2014.
    [19] 杨兴,黄化刚,王玲,等.烟秆生物质炭热解温度优化及理化性质分析[J].浙江大学学报(农业与生命科学版),2016,42(2):245-255.
    [20] 罗煜,赵立欣,孟海波,等.不同温度下热裂解芒草生物质炭的理化特征分析[J].农业工程学报,2013,29(13):208-217.
    [21] 罗凯,陈汉平,王贤华,等.生物质焦及其特性[J].可再生能源,2007,25(1):17-19.
    [22] 刘志龙.麻栎炭用林种源选择与关键培育技术研究[D].南京:南京林业大学,2010.
    [23] 李桥,高屿涛.生物质炭对水中重金属吸附研究进展[J].低碳世界,2016(22):13-15.
    [24] 吴瑾光.近代傅里叶变换红外光谱技术及应用[M].北京:科学技术文献出版社,1994.
    [25] 张越,林珈羽,刘沅,等.改性生物炭对镉离子吸附性能研究[J].武汉科技大学学报,2016,39(1):48-52.
    [26] 王月瑛,吕贻忠.酸洗处理对生物质炭表面吸附特性及光谱特性的影响[J].光谱学与光谱分析,2016,36(10):3292-3296.
    [27] 温婧,朱元骏,张兴昌,等.砒砂岩修复晋陕蒙能源区铅污染土壤的研究[J].环境科学学报,2015,35(3):873-879.
    [28] 孙红文.生物炭与环境[M].北京:化学工业出版社,2013.
    [29] 周以力,吴建一.壳聚糖对铅离子吸附的研究[J].嘉兴学院学报,2003,15(6):20-21.
    [30] 梁东旭,罗春燕,周鑫,等.改性小麦壳对水溶液中Cd2+的吸附研究[J].农业环境科学学报,2015,34(12):2364-2371.
    [31] 周尊隆,卢媛,孙红文.菲在不同性质黑炭上的吸附动力学和等温线研究[J].农业环境科学学报,2010,29(3):476-480.
    [32] Vimonses V, Lei S, Bo J, et al. Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials[J].Chemical Engineering Journal,2010,148(2):354-364.
    [33] 张伟,王维清,王德志,等.磁性斜发沸石对溶液中Pb2+的吸附性能[J].安徽农业科学,2015,43(27):206-208.
    [34] 秦婷婷,王兆炜,朱俊民,等.花椰菜基生物炭对水中Pb(Ⅱ)的吸附性能[J].环境科学学报,2017,37(8):2977-2988.
    [35] 景明.生物炭对土壤中六价铬和莠去津的吸附锁定作用研究[D].北京:中国地质大学(北京),2015.
    [36] 郭林中,韦瑞杰,王海潮,等.改性活性炭的制备及其对金吸附性能的研究[J].岩矿测试,2014,33(4):528-534.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700