用户名: 密码: 验证码:
O~++H_2→OH~++H反应的动力学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamics studies of O~+ + H_2→OH~+ + H reaction
  • 作者:袁美玲 ; 李文涛
  • 英文作者:Yuan Mei-Ling;Li Wen-Tao;School of Opt-Electronic Engineering, Zaozhuang University;Department of Mathematics and Physics, BoHai University;State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics,Chinese Academy of Sciences;
  • 关键词:OH_2~+体系 ; 反应概率 ; 积分截面 ; 微分截面
  • 英文关键词:OH_2~+ system;;reaction probability;;integral cross section;;differential cross section
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:枣庄学院光电工程学院;渤海大学数理系;中国科学院大连化学物理研究所分子反应动力学国家重点实验室;
  • 出版日期:2019-04-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:辽宁省教育厅青年项目(批准号:LQ2017001)资助的课题~~
  • 语种:中文;
  • 页:WLXB201908008
  • 页数:7
  • CN:08
  • ISSN:11-1958/O4
  • 分类号:80-86
摘要
采用含时量子波包方法结合二阶分裂算符传播子对初始态为(v=0, j=0)的O~++H_2→OH~++H反应体系在0.01—1.00 eV的碰撞能范围内进行了态分辨理论水平上的动力学计算.对反应概率、积分截面、微分截面以及固定初始态的热速率常数等动力学信息进行了计算并与文献报道的实验和理论结果进行了比较.结果表明本文的理论结果与实验结果十分符合.从微分截面的散射信息可知,在低碰撞能范围内,插入反应机制在反应中占据主导地位.随着碰撞能的增加,反应机制逐渐由插入机制变为抽取反应机制.
        In the present work, the long-range interaction potential part of potential energy surface(PES) of OH_2+system is revised and the new resulting PES apparently is more reasonable than the old one in the long-range part. Based on the new PES, the dynamics calculations of O~+ +H_2→ OH+ + H reaction are carried out at a state-to-state level of theory by using time-dependent quantum wave packet method with second order split operator in a collision energy range from 0.01 to 1.0 eV. The dynamic properties such as reaction probability,ro-vibrational resolved statereaction probability, integral cross section, differential cross section, and state specific rate constant are calculated and compared with available theoretical and experimental results. The results of ro-vibrational resolved state reaction probability reflect some dynamic properties such as resonances which is attributed to the deep well located on the reaction path. The vibrational resolved state reaction probability indicates that the excitation efficiency of the OH+ product is relatively low. The results of integral cross sections indicate that the present results are in better agreement with the experimental values than with previous theoretical calculations, especially in the low collision energy region. However, the state specific rate constant results underestimate the experimental values. The comparison betweenour calculations and the experimental results indicates that the contribution of the rotational excitation of H_2 molecule should be included in the calculations. However, only the initial state v = 0, j = 0 is calculated in the present work. We suppose that the deviation of the present results from the experimental data is due to the fact that the rotational excitation of reactant isnot included in the present calculation. The differential cross section signals indicate that the complex-forming reaction mechanism isdominated in the case of low collision energy, but it transforms into abstract reaction mechanism as the collision energy further increases.
引文
[1] Duley W W, Williams D A 1984 Interstellar Chemistry(New York:Academic Press)p251
    [2] Armentrout P 2000 Int. J. Mass Spectrom. Ion Process. 20021933
    [3] Jambrina P G, Alvarino J M, Gerlich D, Hankel M, Herrero V J, Saez-Rabanos V, Aoiz F J 2012 Phys. Chem. Chem.Phys. 14 3346
    [4] Wang B B, Han Y C, Gao W, Cong S L 2017 Phys. Chem.Chem. Phys. 19 22926
    [5] Fehsenfeld F C, Schmeltekopf A L, Ferguson E E 1967 J.Chem. Phys. 46 2802
    [6] Kim J K, Theard L P, Huntress W T 1975 J. Chem. Phys. 6245
    [7] Federer W, Villinger H, Howorka F, Lindinger W, Tosi P,Bassi D, Ferguson E 1984 Phys. Rev. Lett. 52 2084
    [8] Smith D, Adams N G, Miller T M 1978 J. Chem. Phys. 69308
    [9] Burley J, Ervin K M, Armentrout P 1987 Int. J. Mass Spectrom. Ion Process 80 153
    [10] Sunderlin L, Armentrout P 1990 Chem. Phys. Lett. 167 188
    [11] Flesch G D, Ng C Y 1991 J. Chem. Phys. 94 2372
    [12] Li X, Huang Y L, Flesch G D, Ng C Y 1997 J. Chem. Phys.106 564
    [13] Gillen K T, Mahan B H, Winn J S 1973 J. Chem. Phys. 585373
    [14] Gillen K T, Mahan B H, Winn J S 1973 J. Chem. Phys. 596380
    [15] Ng C Y 2002 J. Phys. Chem. A 106 5953
    [16] Martinez R, Millan J, Gonzalez M 2004 J. Chem. Phys. 1204705
    [17] Martinez R, Sierra J D, Gonzalez M 2005 J. Chem. Phys. 123174312
    [18] Martinez R, Lucas J M, Gimenez X, Aguilar A, Gonzalez M2006 J. Chem. Phys. 124 144301
    [19] Martinez R, Sierra J D, Gray S K, Gonzalez M 2006 J. Chem.Phys. 125 164305
    [20] Klos J, Bulut N, Akpinar S 2012 Chem. Phys. Lett. 532 22
    [21] Xu W, Li W, Lv S, Zhai H, Duan Z, Zhang P 2012 J. Phys.Chem. A 116 10882
    [22] Gomez-Carrasco S, Godard B, Lique F, Bulut N, Klos J,Roncero O, Aguado A, Aoiz F J, Castillo J F, Goicoechea J R2014 Astrophys. J. 794 33
    [23] Bulut N, Castillo J F, Jambrina P G, Klos J, Roncero O,Aoiz F J, Banares L 2015 J. Phys. Chem. A 119 11951
    [24] Li W T, Yuan J C, Yuan M L, Zhang Y, Yao M H, Sun Z G2018 Phys. Chem. Chem. Phys. 20 1039
    [25] Duan Z X, Qiu M H, Yao C X 2014 Acta Phys. Sin. 63063402(in Chinese)[段志欣,邱明辉,姚翠霞2014物理学报63 063402]
    [26] Li W T, Yu W T, Yao M H 2018 Acta Phys. Sin. 67 103401(in Chinese)[李文涛,于文涛,姚明海2018物理学报67103401]
    [27] Zhang J, Wei W, Gao S B, Meng Q T 2015 Acta Phys. Sin.64 063101(in Chinese)[张静,魏巍,高守宝,孟庆田2015物理学报64 063101]
    [28] Zhao B, Sun Z G, Guo H 2016 J. Chem. Phys. 144 214303
    [29] Zhao B, Sun Z G, Guo H 2016 J. Chem. Phys. 144 064104
    [30] Li W T, Chen M D, Sun Z G 2015 Chin. J. Chem. Phys. 28415
    [31] Fleck J A, Morris J R, Feit M D 1976 Appl. Phys. 10 129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700