用户名: 密码: 验证码:
生姜山药复合粉工艺优化及其体外模拟消化研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Process Optimizition of Ginger-yam Compound Powder and It's Simulating Digestion in Virtro
  • 作者:芦宇 ; 焦天慧 ; 李萌萌 ; 纪秀凤 ; 宋丹 ; 崔芷萌 ; 杨利 ; 孙彤 ; 吕长鑫 ; 励建荣
  • 英文作者:Lu Yu;Jiao Tianhui;Li Mengmeng;Ji Xiufeng;Song Dan;Cui Zhimeng;Yang Li;Sun Tong;Lü Changxin;Li Jianrong;Food Science and Engineering Institute of Bohai University,Food Safety Key Lab of Liaoning Province,National &Local Joint Engineering Research Center of Storage,Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products;
  • 关键词:生姜 ; 山药 ; 复合粉 ; 响应面 ; 体外消化
  • 英文关键词:ginger;;yam;;compound powder;;response surface;;in vitro digestion
  • 中文刊名:ZGSP
  • 英文刊名:Journal of Chinese Institute of Food Science and Technology
  • 机构:渤海大学食品科学与工程学院辽宁省食品安全重点实验室生鲜农产品贮藏加工及安全控制技术国家地方联合工程研究中心;
  • 出版日期:2018-11-30
  • 出版单位:中国食品学报
  • 年:2018
  • 期:v.18
  • 基金:国家“十三五”重点研发计划专项项目;; 辽宁省科技厅农业攻关计划项目(2011205001)
  • 语种:中文;
  • 页:ZGSP201811011
  • 页数:9
  • CN:11
  • ISSN:11-4528/TS
  • 分类号:87-95
摘要
以生姜为主要原料,以姜辣素含量、多糖得率和水分含量为指标,采用响应面法(RSM)优化生姜干燥工艺。将生姜粉与山药粉复配研制生姜山药复合粉,对该粉的体外消化稳定性进行研究,结果表明,生姜最优干燥条件为姜片厚度2.0 mm,干燥温度67℃,干燥时间6.8 h,在此条件下姜粉中姜辣素含量达12.94 mg/g;60℃干燥4 h所得山药粉与生姜粉的最佳混合比例m_(生姜粉)∶m_(山药粉)=1∶1.5,此时复合粉口感最佳;复合粉在模拟胃消化2.0 h后,姜辣素释放量是空白对照组的1.35倍,多糖含量基本不变;模拟肠消化1.0 h后,姜辣素、多糖含量开始下降。通过响应面法建立省时、高效的生姜干燥工艺模型,所得产品营养成分保留较高,口感优。模拟胃消化可提高复合粉中姜辣素释放,多糖含量无显著变化。模拟肠消化可促进姜辣素及多糖等物质的消化分解。
        Ginger was taken as main raw material, the yam powder as auxiliary material. The ginger drying conditions were optimized by Box-Behnken of response surface methodology. Ginger-yam compound powder was prepared under the conditions: drying temperature 60 ℃, drying time 4.0 h. The stability of compound powder was explored under in vitro simulated gastrointestinal digestion. The results showed that optimum conditions were: ginger chips thickness was 2.0 mm, the drying temperature was 67 ℃, the drying time was 6.8 h. Under these conditions the highest dissolubility of gingerol was 12.94 mg/g. The best ratio of ginger and yam was 1 ∶ 1.5. After the gastric digestion 2.0 h, quantity of gingerol was 1.35 times higher than blank group and no significant changes were observed in polysaccharide content. These results proved that gastric digestion promote the release of gingerol. Gingerol and polysaccharide were not digested during digestive of stomach. After 1.0 h of digestion intestinal, the quantity of gingerol and polysaccharide started to decline. It indicates that both pancreatic enzymes could promote digestion of gingerol and polysaccharide.
引文
[1]姜艳艳.鲜姜中姜辣素的提取及姜渣的综合利用[D].泰安:山东农业大学, 2013.
    [2]朱丹实,刘仁斌,杜伟,等.生姜成分差异及采后贮藏保鲜技术研究进展[J].食品工业科技, 2015, 36(17):375-378.
    [3]赵德婉.生姜优质丰产栽培原理与技术[M].北京:中国农业出版社, 2002:1-318.
    [4] YEH H Y, CHUANG C H, CHEN H C, et al. Bioactive components analysis of two various gingers(Zingiber officinale Roscoe)and antioxidant effect of ginger extracts[J]. LWT-Food Science and Technology, 2014, 559(1):329-334.
    [5] ARAYA J J, ZHANG H P, PRISINZANO T E, et al. Identification of unprecedented purine-containing compounds, the zingerines, from ginger rhizomes(Zingiber officinale Roscoe)using a phase-trafficking approach[J].Phytochemistry, 2011, 72(9):935-941.
    [6] MESOMO M C, CORAZZA L, NDIAYE P M, et al. Supercritical CO2extracts and essential oil of ginger(Zingiber officinale R.):Chemical composition and antibacterial activity[J]. Journal of Supercritical Fluids, 2013, 80:44-49.
    [7] SHUKLA Y, SINGH M.. Cancer preventive properties of ginger:A brief review[J]. Food and Chemical Toxicology,2007, 45(5):683-690.
    [8]张钟,刘晓明.不同干燥方法对生姜粉物理性质的影响[J].包装与食品机械, 2005, 23(3):10-14.
    [9]陈甜田.山药醋发酵工艺的研究[D].长春:吉林农业大学, 2012.
    [10] LIANG L, WU X, ZHAO T, et al. In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry(Morus atropurpurea Roxb.)following simulated gastro-intestinal digestion[J]. Food Research International, 2012, 46(1):76-82.
    [11]王效金,管延安,李颖.小米山药混合粉的制作及品质分析[J].粮食与饲料工业, 2011, 12(7):24-25.
    [12] RUFIAN-HENARES J A, DELGADO-ANDRADE C. Effect of digestive process on Maillard reaction indexes and antioxidant properties of breakfast cereals[J]. Food Reserch International, 2009, 42(3):394-400.
    [13] PASTORIZA S, DELGADO-ANRADE C, HARO A, et al. A physiologic approach to test the global antioxidant response of foods. The GAR method[J]. Food Chemistry, 2011, 129(4):1926-1932.
    [14] GB 50093-2010食品安全国家标准食品中水分的测定[S].
    [15] NY-T 1073-2006脱水姜片和姜粉[S].
    [16]刘成梅,刘伟,李明,等.微波辅助萃取生姜中姜辣素的研究[J].食品科技, 2006,(2):52-54.
    [17]唐仕蓉,宋慧,刘全德,等.姜辣素的超声波提取及其抗氧化性研究[J].食品科学, 2009, 30(20):138-142.
    [18]窦茜茜.桑黄多糖的提取、纯化、理化性质与活性研究及片剂制备[D].北京:中国人民解放军军事医学科学院,2008.
    [19]高行恩,王洪新.不同提取方法对山药多糖含量及其体外抗氧化活性影响[J].食品与发酵工业, 2015, 41(7):256-257.
    [20]姜军.山药多糖的分离纯化及其化学结构的初步研究[D].扬州:扬州大学, 2007.
    [21]王刚.姜辣素的稳定化措施探讨[D].重庆:重庆大学, 2009.
    [22]吕长鑫,李萌萌,梁洁玉.响应面分析法优化红树莓酸性乳饮料复合稳定剂[J].中国食品学报, 2014, 14(10):149-156.
    [23]林建原,季丽红.响应面优化银杏叶中黄酮的提取工艺[J].中国食品学报, 2013, 13(2):83-90.
    [24]江学平,郜海燕,陈杭君,等.倒笃菜肉沫软罐头加工及杀菌工艺研究[J].中国食品学报, 2014, 14(10):157-163.
    [25]闵芳芳,聂少平,万宇俊,等.青钱柳多糖在体外消化模型中的消化与吸收[J].食品科学, 2013, 34(21):24-29.
    [26]张冠亚.铁皮石斛多糖在模拟消化、酵解体系中的代谢特点及其改善肠道功能的研究[D].南昌:南昌大学, 2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700