用户名: 密码: 验证码:
挥发性有机物组合末端治理技术的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on integrated terminal control technology of volatile organic compounds
  • 作者:田静 ; 史兆臣 ; 万亚萌 ; 何海霞 ; 李涛 ; 任保增
  • 英文作者:TIAN Jing;SHI Zhao-chen;WAN Ya-meng;HE Hai-xia;LI Tao;REN Bao-zeng;School of Chemical Engineering and Energy,Zhengzhou University;
  • 关键词:VOCs ; 减排控制 ; 末端治理 ; 单一治理技术 ; 组合技术
  • 英文关键词:volatile organic compounds;;emission reduction control;;terminal control;;single terminal control technology;;composite technique
  • 中文刊名:SXHG
  • 英文刊名:Applied Chemical Industry
  • 机构:郑州大学化工与能源学院;
  • 出版日期:2019-05-23 13:40
  • 出版单位:应用化工
  • 年:2019
  • 期:v.48;No.328
  • 基金:国家重点研发计划重点专项(2017YFC0212404);; 国家自然科学基金青年基金项目(21506197)
  • 语种:中文;
  • 页:SXHG201906042
  • 页数:7
  • CN:06
  • ISSN:61-1370/TQ
  • 分类号:195-201
摘要
在现有单一末端治理技术基础上,对吸附浓缩-催化燃烧、冷凝-催化燃烧、吸附-冷凝、吸附-光催化和低温等离子体-光催化等组合技术的原理、工艺流程、研究现状及发展前景进行了具体论述。通过不同末端治理技术的对比,发现单一末端治理技术难以有效实现VOCs的减排控制,而组合末端治理技术具有净化率高、投资成本少、能耗低、无二次污染等优势,已成为目前研究的热点。其中吸附浓缩-催化燃烧技术已经取得广泛应用,其他新兴组合技术还有待研究与创新。指出了我国VOCs末端治理技术存在的主要问题及今后的发展方向。
        Based on the existing single terminal control technologies,the principles,process flow,research status and development prospects of combined technologies such as adsorption and concentration catalytic combustion,condensation catalytic combustion,adsorption condensation,adsorption photocatalytic and non-thermal plasma photocatalytic were discussed in details respectively. Through the comparison of various terminal control technologies,it is found that a single terminal control technology is difficult to control VOCs effectively. However,the composite technique has the advantages of high VOCs purification rate,low investment cost,low energy consumption and without second pollution,which has become a hot research topic. Moreover,the adsorption catalytic combustion technique has been widely applied to pollution management,and other emerging combination technologies have yet to be researched and innovated. In addition,the existing problems and prospects of VOCs terminal control technology in China are proposed.
引文
[1]王海林,王俊慧,祝春蕾,等.包装印刷行业挥发性有机物控制技术评估与筛选[J].环境科学,2014(7):2503-2507.
    [2] Liang X,Chen X,Zhang J,et al. Reactivity-based industrial volatile organic compounds emission inventory and its implications for ozone control strategies in China[J]. Atmospheric Environment,2017,162(8):115-162.
    [3] Gong Y,Wei Y,Cheng J,et al. Health risk assessment and personal exposure to Volatile Organic Compounds(VOCs)in metro carriages-A case study in Shanghai,China[J].Science of the Total Environment,2017,574(1):1432-1438.
    [4]宗述.六部委印发“十三五”挥发性有机物污染防治工作方案[J].中国环境监察,2017(9):15-16.
    [5]王宇飞,刘昌新,程杰,等.工业VOCs经济手段和工程技术减排对比性分析[J].环境科学,2015(4):1507-1512.
    [6]关丽萍.挥发性有机物(VOCs)末端控制技术实践与发展综述[J].气体净化,2018(10):28-32.
    [7]刘辰,韩颖杰,张会来,等.挥发性有机废气处理技术及装备[J].应用化工,2014(S1):67-69.
    [8]席劲瑛,武俊良,胡洪营,等.工业VOCs气体处理技术应用状况调查分析[J].中国环境科学,2012(11):1955-1960.
    [9]祁忆青,李晓菊,黄琼涛.木家具硝基漆涂饰车间VOC排放治理[J].林业科技开发,2015(4):11-16.
    [10]栾志强,郝郑平,王喜芹.工业固定源VOCs治理技术分析评估[J].环境科学,2011(12):3476-3486.
    [11]谢美富.吸附浓缩-催化燃烧法治理“三苯”废气[J].福建环境,1997(4):5.
    [12] Xia Q H,Hidajat K,Kawi S. Adsorption and catalytic combustion of aromatics on platinum-supported MCM-41materials[J]. Catalysis Today,2001,68(1):255-262.
    [13] Huang S,Zhang C,Hong H E. In situ adsorption-catalysis system for the removal of o-xylene over an activated carbon supported Pd catalyst[J]. Journal of Environmental Sciences,2009,21(7):985-990.
    [14]彭芬.吸附-催化燃烧技术研究[J].再生资源与循环经济,2017,10(4):38-40.
    [15] Serrano D P,Calleja G,Botas J A,et al. Characterization of adsorptive and hydrophobic properties of silicalite-1,ZSM-5,TS-1 and Beta zeolites by TPD techniques[J].Separation&Purification Technology,2007,54(1):1-9.
    [16]孟庆海,张克勤.冷凝-催化燃烧两步法处理油漆厂热炼尾气[J].涂料工业,1986(6):5-6.
    [17]刘忠生,李花伊,陈玉香,等.冷凝-催化燃烧法处理乙烯厂富含水蒸气的恶臭废气[J].化工环保,2003(2):97-99.
    [18] Nagata T,Tajima H,Yamasaki A,et al. An analysis of gas separation processes of HFC-134a from gaseous mixtures with nitrogen—Comparison of two types of gas separation methods,liquefaction and hydrate-based methods,in terms of the equilibrium recovery ratio[J]. Separation&Purification Technology,2009,64(3):351-356.
    [19]石莉,黄维秋,胡志伦,等.油气冷凝和吸附集成回收工艺的研究[J].石油学报:石油加工,2014,30(1):87-93.
    [20]单晓雯.石化企业吸附冷凝法尾气处理装置研究与应用[J].安全、健康和环境,2015,15(7):30-33.
    [21]刘建华.冷凝和吸附组合工艺油气回收装置的应用及优化[J].石油库与加油站,2015,24(4):19-21.
    [22] Gupta V K,Verma N. Removal of volatile organic compounds by cryogenic condensation followed by adsorption[J]. Chemical Engineering Science,2002,57(14):2679-2696.
    [23] Fournel L,Mocho P,Fanlo J L,et al. External capillary condensation and adsorption of VOCs onto activated carbon fiber cloth and felt[J]. Environmental Technology Letters,2005,26(11):1277-1288.
    [24] Jo W. Purification of aromatic hydrocarbons via fibrous activated carbon/photocatalytic composite coupled with UV light-emitting diodes[J]. Environmental Technology,2013,34(9/10/11/12):1175-1181.
    [25] Aghighi A,Haghighat F. Using physical-chemical properties of reactants to estimate the performance of photocatalytic oxidation air cleaners[J]. Building&Environment,2015,85(85):114-122.
    [26]张庆冬,赵朝成,郭绍辉,等.吸附光催化氧化处理甲苯恶臭气体的研究[J].现代化工,2010,30(10):63-64.
    [27]李纯志,汤沛东.一种高效组合式VOC废气处理装置:CN,107596910A[P]. 2018-01-19.
    [28]潘孝庆,丁红蕾,潘卫国,等.低温等离子体及协同催化降解VOCs研究进展[J].应用化工,2017,46(1):176-179.
    [29] Van Durme J,Dewulf J,Leys C,et al. Combining nonthermal plasma with heterogeneous catalysis in waste gas treatment:A review[J]. Applied Catalysis B,Environmental,2008,78(3):324-333.
    [30] Feng X,Liu H,He C,et al. Synergistic effects and mechanism of a non-thermal plasma catalysis system in volatile organic compound removal:a review[J]. Catalysis Science&Technology,2018(8):936-954.
    [31] Kang M,Kim B J,Cho S M,et al. Decomposition of toluene using an atmospheric pressure plasma/Ti O2catalytic system[J]. Journal of Molecular Catalysis A Chemical,2002,180(1):125-132.
    [32] Rousseau A,Guaitella O,Gatilova L,et al. Photocatalyst activation in a pulsed low pressure discharge[J]. Applied Physics Letters,2005,87(22):55-58.
    [33]李晶欣,李坚,梁文俊,等.低温等离子体联合光催化技术降解甲苯的实验研究[J].环境污染与防治,2011,33(3):69-73.
    [34] Zhu T,Chen R,Xia N,et al. Volatile organic compounds emission control in industrial pollution source using plasma technology coupled with F-TiO2/3-Al2O3[J]. Environmental Technology,2015,36(11):1405-1413.
    [35]黄勇,陈江耀,李建军,等.生物滴滤塔耦合光催化氧化技术处理电子垃圾拆解车间排放废气的中试研究[J].生态环境学报,2014,23(5):817-823.
    [36]李伟,方卫.“冷凝+膜分离+吸附”组合工艺在油气回收中的应用[J].中外能源,2016,21(11):93-97.
    [37] Belaissaoui B,Moullec Y L,Favre E. Energy efficiency of a hybrid membrane/condensation process for VOC(Volatile Organic Compounds)recovery from air:A generic approach[J]. Energy,2016,95:291-302.
    [38] Nigar H,Julián I,Mallada R. Microwave-assisted catalytic combustion for the efficient continuous cleaning of VOCcontaining air streams[J]. Environmental Science&Technology,2018,52(10):5892-5901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700