用户名: 密码: 验证码:
酚类内分泌干扰物在长江鱼体血浆中的生物富集
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bioaccumulation of phenolic endocrine disrupting chemicals in the plasma of wild fish from Yangtze River, China
  • 作者:吕银知 ; 赵建亮 ; 姚理 ; 何良英 ; 陈军 ; 史文俊 ; 应光国
  • 英文作者:LV Yinzhi;ZHAO Jianliang;YAO Li;HE Liangying;CHEN Jun;SHI Wenjun;YING Guangguo;State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety,SCNU Environmental Research Institute, South China Normal University;
  • 关键词:酚类内分泌干扰物(EDCs) ; 野外鱼体 ; 生物富集因子 ; 长江中下游
  • 英文关键词:endocrine disrupting chemicals;;wild fish;;bioaccumulation factor;;the middle and lower reaches of the Yangtze River
  • 中文刊名:HJHX
  • 英文刊名:Environmental Chemistry
  • 机构:中国科学院广州地球化学研究所有机地球化学国家重点实验室;中国科学院大学;华南师范大学环境研究院广东省化学品污染与环境安全重点实验室;
  • 出版日期:2019-03-05 09:54
  • 出版单位:环境化学
  • 年:2019
  • 期:v.38
  • 基金:国家自然科学基金(41877360,41703117);; 中国博士后科学基金(2016LH0021,2017M612773)资助~~
  • 语种:中文;
  • 页:HJHX201903002
  • 页数:11
  • CN:03
  • ISSN:11-1844/X
  • 分类号:5-15
摘要
内分泌干扰物(Endocrine disrupting chemicals, EDCs)广泛存在于水环境,可在生物体内富集,具有潜在生态和健康风险.本研究选取双酚A(BPA)、辛基酚(4-t-OP)、雌酮(E1)、17β-雌二醇(E2)和炔雌醇(EE2)共5种酚类EDCs,分别测定其在长江中下游地表水和鱼体血浆中的含量及生物富集因子(Bioaccumulation factor, BAF),并结合血浆BAF预测模型对其生物富集能力进行评价.结果表明,BPA、4-t-OP和E1污染最为普遍,在地表水和鱼体血浆中检出率均超过50%,而其它两种EDCs(E2和EE2)在水体和鱼体血浆中的检出率和浓度均较低.综合检出频率和含量来看:BPA> 4-t-OP> E1> E2、EE2,5种酚类EDCs在水体中的最大浓度分别为99.7、22.3、2.47 ng·L~(-1)、ND(未检出)和ND,在鱼体血浆中的最大浓度分别为172、91.5、21.1、5.34、5.90 ng·mL~(-1).检出的3种酚类EDCs(BPA、4-t-OP和E1)的log BAF范围分别为2.29—4.20、3.18—4.18和3.29—3.75,表明鱼体血浆对酚类EDCs具有较高的生物富集潜能.对比模型预测的log BAF,实测的log BAF值明显较高,差异的产生与模型建立的前提假设、水温和溶解氧等因素密切相关.本研究有助于认识长江中下游鱼体中酚类EDCs的生物富集特征,并为其生态风险评价和管控提供依据.
        Endocrine disrupting chemicals(EDCs) are ubiquitous contaminants in surface water, and they may be accumulated by aquatic organisms, posing potential threats to ecosystem and human health. In this study, occurrence and bioaccumulation of five phenolic EDCs, including bisphenol A(BPA), 4-tert-octylphenol(4-t-OP), estrone(E1), 17β-estradiol(E2) and 17α-ethinylestradiol(EE2), were investigated in the surface water and plasma of wild fish collected from the middle and lower reaches of the Yangtze River, China. And a fish plasma model for the estimation of BAF(Bioaccumulation factor) was selected to compare the predicted value with the measured plasma BAF. The results indicated that BPA, 4-t-OP and E1 were the frequently detected pollutants in the river, with the detection rates higher than 50% in both surface water and fish plasma, while E2 and EE2 were detected at relatively lower frequencies and levels. The detection rates and concentrations level for the five phenolic EDCs followed the order: BPA > 4-t-OP > E1 > E2 and EE2, with the maximum concentrations of 99.7, 22.3, 2.47 ng·L~(-1), ND(not detected) and ND in water, and 172, 91.5, 21.1, 5.34, 5.90 ng·mL~(-1) in fish plasma, respectively. The detected log BAF values for BPA, 4-t-OP and E1 were in the range of 2.29—4.20, 3.18—4.18 and 3.29—3.75, respectively, indicating strong bioaccumulation ability of these EDCs in fish plasma. Compared with the modeling results, the measured log BAF values were significantly higher than the predicted log BAF. This difference may be due to the factors such as hypothesis of the fish plasma model, water temperature, dissolved oxygen and so on. The results of this study contribute to better understanding of the bioaccumulation of the phenolic EDCs in fish from the middle and lower reaches of Yangtze River, which can support the risk assessment and management for these compounds.
引文
[1] TYLER C R, JOBLING S, SUMPTER J P. Endocrine disruption in wildlife: A critical review of the evidence[J]. Critical Reviews in Toxicology, 1998, 28(4): 319-361.
    [2] GROSS-SOROKIN M Y, ROAST S D, BRIGHTY G C. Assessment of feminization of male fish in English rivers by the environment agency of england and wales[J]. Environmental Health Perspectives, 2006, 114(Suppl 1): 147-151.
    [3] HOTCHKISS A K, RIDER C V, BLYSTONE C R, et al. Fifteen years after “Wingspread”—environmental endocrine disrupters and human and wildlife health: Where we are today and where we need to go[J]. Toxicological Sciences, 2008, 105(2): 235-259.
    [4] 夏星辉, 杨居荣, 许嘉琳. 环境激素污染研究进展[J]. 上海环境科学, 2001, 20(2): 56-59.XIA X H, YANG J R, XU J L. Study progress on environmental hormone pollution[J]. Shanghai Environmental Sciences, 2001, 20(2): 56-59 (in Chinese).
    [5] ZUO Y, ZHU Z, ALSHANGITI M, et al. Bisphenol A and the related alkylphenol contaminants in crustaceans and their potential bioeffects[J]. Advances in Environmental Research, 2015, 4(1): 39-48.
    [6] HUANG B, SUN W W, LI X M, et al. Effects and bioaccumulation of 17β-estradiol and 17α-ethynylestradiol following long-term exposure in crucian carp[J]. Ecotoxicology & Environmental Safety, 2015, 112: 169-176.
    [7] LI Z, XIANG X, LI M, et al. Occurrence and risk assessment of pharmaceuticals and personal care products and endocrine disrupting chemicals in reclaimed water and receiving groundwater in China[J]. Ecotoxicology and Environmental Safety, 2015, 119: 74-80.
    [8] NAN X, XU Y F, XU S, et al. Removal of estrogens in municipal wastewater treatment plants: A Chinese perspective[J]. Environmental Pollution, 2012, 165(6):215-224.
    [9] RAHMAN M F, YANFUL E K, JASIM S Y. Endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs) in the aquatic environment: Implications for the drinking water industry and global environmental health[J]. Journal of Water and Health, 2009, 7(2): 224-243.
    [10] TYLER C R, SPARY C, GIBSON R, et al. Accounting for differences in estrogenic responses in rainbow trout (Oncorhynchus mykiss: Salmonidae) and roach (Rutilus rutilus: Cyprinidae) exposed to effluents from wastewater treatment works[J]. Environmental Science & Technology, 2005, 39(8): 2599-2607.
    [11] ORLANDO E F, KOLOK A S, BINZCIK G A, et al. Endocrine-disrupting effects of cattle feedlot effluent on an aquatic sentinel species, the fathead minnow[J]. Environmental Health Perspectives, 2004, 112(3): 353-358.
    [12] STADNICKA J, SCHIRMER K, ASHAUER R. Predicting concentrations of organic chemicals in fish by using toxicokinetic models[J]. Environmental Science &Technology, 2012, 46(6): 3273-3280.
    [13] SIJM D T H M, HERMENS J L M. Internal effect concentration: Link between bioaccumulation and ecotoxicity for organic chemicals[M]. The Handbook of Environmental Chemistry: Bioaccumulation-New Aspects and Developments. Springer Berlin Heidelberg, 2000, 2: 167-199.
    [14] BROX S, RITTER A P, Küster E, et al. A quantitative HPLC-MS/MS method for studying internal concentrations and toxicokinetics of 34 polar analytes in zebrafish (Danio rerio) embryos[J]. Analytical and Bioanalytical Chemistry, 2014, 406(20): 4831-4840.
    [15] VOGS C, Kühnert A, HUG C, et al. A toxicokinetic study of specifically acting and reactive organic chemicals for the prediction of internal effect concentrations in Scenedesmus vacuolatus[J]. Environmental Toxicology and Chemistry, 2015, 34(1): 100-111.
    [16] HUANG B, WANG B, REN D, et al. Occurrence, removal and bioaccumulation of steroid estrogens in Dianchi Lake catchment, China[J]. Environment International, 2013, 59: 262-273.
    [17] HUANG B, XIONG D, HE H, et al. Characteristics and bioaccumulation of progestogens, androgens, estrogens, and phenols in Erhai Lake catchment, Yunnan, China[J]. Environmental Engineering Science, 2017, 34(5): 321-332.
    [18] NURULNADIA M Y, KOYAMA J, UNO S, et al. Accumulation of endocrine disrupting chemicals (EDCs) in the polychaete Paraprionospio sp. from the Yodo River mouth, Osaka Bay, Japan[J]. Environmental Monitoring and Assessment, 2014, 186(3): 1453-1463.
    [19] 刘元元. 药物动力学及药物动力学的新进展[J]. 河北农业科学, 2008, 12(9): 168-170.LIU Y Y. Pharmacokinetics and Its new progress[J]. Journal of Hebei Agricultural Sciences, 2008, 12(9): 168-170 (in Chinese).
    [20] 罗芬, 池玉梅, 吴皓. 中药代谢动力学研究概述[J]. 中国实验方剂学杂志, 2011, 17(14): 284-288.LUO F, CHI Y M, WU H. Overview about pharmacokinetics of traditional chinese medicine study[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2011, 17(14): 284-288 (in Chinese).
    [21] LIU Y H, ZHANG S H, JI G X, et al. Occurrence, distribution and risk assessment of suspected endocrine-disrupting chemicals in surface water and suspended particulate matter of Yangtze River (Nanjing section)[J]. Ecotoxicology and Environmental Safety, 2017, 135: 90-97.
    [22] NIE M, YAN C, DONG W, et al. Occurrence, distribution and risk assessment of estrogens in surface water, suspended particulate matter, and sediments of the Yangtze Estuary[J]. Chemosphere, 2015, 127: 109-116.
    [23] SHI X, ZHOU J L, ZHAO H, et al. Application of passive sampling in assessing the occurrence and risk of antibiotics and endocrine disrupting chemicals in the Yangtze Estuary, China[J]. Chemosphere, 2014, 111: 344-351.
    [24] ZHAO J L, YING G G, WANG L, et al. Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography-negative chemical ionization-mass spectrometry[J]. Science of the Total Environment, 2009, 407(2): 962-974.
    [25] FERREIRO-VERA C, PRIEGO-CAPOTE F, CASTRO L D. Comparison of sample preparation approaches for phospholipids profiling in human serum by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2012, 1240(11): 21-28.
    [26] YING G G, KOOKANA R S, KUMAR A, et al. Occurrence and implications of estrogens and xenoestrogens in sewage effluents and receiving waters from South East Queensland[J]. Science of the Total Environment, 2009, 407(18): 5147-5155.
    [27] ECHA S. support document-4-(1, 1, 3, 3-tetramethylbutyl) phenol, 4-tert-octylphenol[EB/OL].[2018-05-01]. European Chemicals Agency, http://echa.europa.eu/documents/10162/13638/suppdoc_4_tert_octylphenol_20111211_en.pdf
    [28] ARNOT J A, GOBAS F A. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms[J]. Environmental Reviews, 2006, 14(4): 257-297.
    [29] TANOUE R, NOMIYAMA K, NAKAMURA H, et al. Uptake and tissue distribution of pharmaceuticals and personal care products in wild fish from treated-wastewater-impacted streams[J]. Environmental Science & Technology, 2017, 49(19): 11649-11658.
    [30] TRAPP S, HOROBIN R W. A predictive model for the selective accumulation of chemicals in tumor cells[J]. European Biophysics Journal, 2005, 34(7): 959-966.
    [31] SHI W, WANG X Y, HU W, et al. Endocrine-disrupting equivalents in industrial effluents discharged into Yangtze River[J]. Ecotoxicology, 2009, 18(6): 685-692.
    [32] NOPPE H, VERSLYCKE T, DE W E, et al. Occurrence of estrogens in the Scheldt estuary: A 2-year survey[J]. Ecotoxicology & Environmental Safety, 2007, 66(1): 1-8.
    [33] POJANA G, GOMIERO A, JONKERS N, et al. Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon[J]. Environment International, 2007, 33(7): 929-936.
    [34] RA J S, LEE S H, LEE J, et al. Occurrence of estrogenic chemicals in South Korean surface waters and municipal wastewaters[J]. Journal of Environmental Monitoring, 2011, 13(1): 101-109.
    [35] SUMIKO M, MISA K, SACHI K, et al. Determination of estrogenic substances in the water of Muko River using in vitro assays, and the degradation of natrural estrogens by aquatic bacteria[J]. Journal of Health Science, 2005, 51(2): 178-184.
    [36] LEI B L, HUANG S B, ZHOU Y Q, et al. Levels of six estrogens in water and sediment from three rivers in Tianjin Area, China[J]. Chemosphere, 2009, 76(1): 36-42.
    [37] DAN L, WU S, XU H, et al. Distribution and bioaccumulation of endocrine disrupting chemicals in water, sediment and fishes in a shallow Chinese freshwater lake: Implications for ecological and human health risks[J]. Ecotoxicology & Environmental Safety, 2017, 140: 222-229.
    [38] KLOSTERHAUS S L, GRACE R, HAMILTON M C, et al. Method validation and reconnaissance of pharmaceuticals, personal care products, and alkylphenols in surface waters, sediments, and mussels in an urban estuary[J]. Environment International, 2013, 54: 92-99.
    [39] FITZSIMMONS P N, FERNANDEZ J D, HOFFMAN A D, et al. Branchial elimination of superhydrophobic organic compounds by rainbow trout (Oncorhynchus mykiss)[J]. Aquatic Toxicology, 2001, 55(1-2): 23-34.
    [40] 周东星, 高小中, 许宜平,等. 有机化合物生物富集的度量与评价方法进展[J]. 环境化学, 2014, 33(2): 175-185.ZHOU D X, GAO X Z, XU Y P, et al. Advances in metrics and assessment of organic chemical bioaccumulation[J]. Environmental Chemistry, 2014, 33(2): 175-185 (in Chinese).
    [41] 柯润辉, 孙立伟, 陈珊, 等. 三油酸甘油脂-醋酸纤维素复合膜测定水中有机氯农药生物有效性[J]. 环境科学学报, 2007, 27(12): 2019-2024.KE R H, SUN L W, CHEN S, et al. Measuring the bioavailability of organochlorine pesticides in water using triolein embedded cellulose acetate membrane[J]. Acta Scientiae Circumstantiae, 2007, 27(12): 2019-2024 (in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700