用户名: 密码: 验证码:
有机固液废弃物生物炼制的突破性技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Breakthrough Technologies for the Biorefining of Organic Solid and Liquid Wastes
  • 作者:Paul ; Chen ; Erik ; Anderson ; Min ; Addy ; Renchuan ; Zhang ; Yanling ; Cheng ; Peng ; Peng ; Yiwei ; Ma ; Liangliang ; Fan ; Yaning ; Zhang ; Qian ; Lu ; Shiyu ; Liu ; Nan ; Zhou ; Xiangyuan ; Deng ; Wenguang ; Zhou ; Muhammad ; Omar ; Richard ; Griffith ; Faryal ; Kabir ; Hanwu ; Lei ; Yunpu ; Wang ; Yuhuan ; Liu ; Roger ; Ruan
  • 英文作者:Paul Chen;Erik Anderson;Min Addy;Renchuan Zhang;Yanling Cheng;Peng Peng;Yiwei Ma;Liangliang Fan;Yaning Zhang;Qian Lu;Shiyu Liu;Nan Zhou;Xiangyuan Deng;Wenguang Zhou;Muhammad Omar;Richard Griffith;Faryal Kabir;Hanwu Lei;Yunpu Wang;Yuhuan Liu;Roger Ruan;Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota;MOE Biomass Engineering Research Center, Nanchang University;
  • 关键词:城市固体废物 ; 城市废水 ; 热解 ; 气化 ; 厌氧消化 ; 微藻 ; 生物柴油 ; 生物炼制
  • 英文关键词:Municipal solid waste;;Municipal wastewater;;Pyrolysis;;Gasification;;Anaerobic digestion;;Microalgae;;Biodiesel;;Biorefining
  • 中文刊名:GOCH
  • 英文刊名:工程(英文)
  • 机构:Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota;MOE Biomass Engineering Research Center, Nanchang University;
  • 出版日期:2018-08-15
  • 出版单位:Engineering
  • 年:2018
  • 期:v.4
  • 基金:Department of Transport/Sun Grant;; US Department of Agriculture/ Department of Energy;; Minnesota Legislative-Citizen Commission on Minnesota Resources;; Metropolitan Council Environmental Services;; University of Minnesota MNDrive programs;; University of Minnesota Center for Biorefining;; China Scholarship Council (CSC) for their financial support for this work
  • 语种:中文;
  • 页:GOCH201804023
  • 页数:14
  • CN:04
  • ISSN:10-1244/N
  • 分类号:311-324
摘要
有机固液废弃物包含大量能量、养分和水分,不应仅视其为废物。数十年来,人们一直对城市固体废物进行回收、堆制和燃烧,并从中提取能量和有价值的物质。污水的首要管理策略是治理和排放。随着技术的进步,通过新方法使利用固体废物和废水成为可能。考虑到废物特殊的化学、物理和生物性质,需要整合多种技术以使废物的能量和价值回收最大化。为此,生物炼制是完全利用废物中的能量和价值的一个合适的方法。研究证明,不可回收废弃物和生物固体可通过不同方法转化为可利用的热能、电能、燃料和化学品,并且液体废物或能帮助农作物和藻类的成长,为能量回收和食物生产提供不同的选择。本文针对有机固液废物提出新型生物炼制方案,这些废物来源于城市废料、食品和生物加工厂以及动物生产设施。四大新型突破性科技——真空辅助高温厌氧消化、扩展鱼菜共生系统、含油废物经甘油裂解制取生物柴油和微波辅助热化学转化,均可运用于生物炼制方案中,从而成功将废物转化,用以生产化学品、化肥、能量(沼气、合成气、生物柴油和生物油)、食物、饲料,得到干净的水并显著减少污染物的排放。
        Organic solid and liquid wastes contain large amounts of energy, nutrients, and water, and should not be perceived as merely waste. Recycling, composting, and combustion of non-recyclables have been practiced for decades to capture the energy and values from municipal solid wastes. Treatment and disposal have been the primary management strategy for wastewater. As new technologies are emerging, alternative options for the utilization of both solid wastes and wastewater have become available. Considering the complexity of the chemical, physical, and biological properties of these wastes, multiple technologies may be required to maximize the energy and value recovery from the wastes. For this purpose, biorefining tends to be an appropriate approach to completely utilize the energy and value available in wastes.Research has demonstrated that non-recyclable waste materials and bio-solids can be converted into usable heat, electricity, fuel, and chemicals through a variety of processes, and the liquid waste streams have the potential to support crop and algae growth and provide other energy recovery and food production options. In this paper, we propose new biorefining schemes aimed at organic solid and liquid wastes from municipal sources, food and biological processing plants, and animal production facilities. Four new breakthrough technologies—namely, vacuum-assisted thermophilic anaerobic digestion, extended aquaponics, oily wastes to biodiesel via glycerolysis, and microwave-assisted thermochemical conversion—can be incorporated into the biorefining schemes, thereby enabling the complete utilization of those wastes for the production of chemicals, fertilizer, energy(biogas, syngas, biodiesel, and bio-oil),foods, and feeds, and resulting in clean water and a significant reduction in pollutant emissions.
引文
[1] Hong J, Chen Y, Wang M, Ye L, Qi C, Yuan H, et al. Intensification of municipal solid waste disposal in China. Renew Sustain Energy Rev2017;69:168–76.
    [2] Han Z, Ma H, Shi G, He L, Wei L, Shi Q. A review of groundwater contamination near municipal solid waste landfill sites in China. Sci Total Environ 2016;569–570:1255–64.
    [3] Li Y, Yang Y, Yu G, Huang J, Wang B, Deng S, et al. Emission of unintentionally produced persistent organic pollutants(UPOPs)from municipal waste incinerators in China. Chemosphere 2016;158:17–23.
    [4] Zhang QH, Yang WN, Ngo HH, Guo WS, Jin PK, Dzakpasu M, et al. Current status of urban wastewater treatment plants in China. Environ Int 2016;92–93:11–22.
    [5] United States Environmental Protection Agency. Clean watersheds needs survey 2008:report to congress. Report. Washington, DC:Office of Water Management; 2008. Report No.:EPA-832-R-10-002.
    [6] Chai C, Zhang D, Yu Y, Feng Y. Carbon footprint of municipal wastewater treatment plants. In:Proceedings of the 2014 International Conference on Frontier of Energy and Environment Engineering; Taichung, China; 2014 Dec6–7. Boca Raton:CRC Press; 2015. p. 279–82.
    [7] Pabi S, Amarnath A, Goldstein R, Reekie L. Electricity use and management in the municipal water supply and wastewater industries. Final report. Palo Alto:Electric Power Research Institute; 2013.
    [8] Shen Y, Linville JL, Urgun-Demirtas M, Mintz MM, Snyder SW. An overview of biogas production and utilization at full-scale wastewater treatment plants(WWTPs)in the United States:challenges and opportunities towards energyneutral WWTPs. Renew Sustain Energy Rev 2015;50:346–62.
    [9] Heidrich ES, Curtis TP, Dolfing J. Determination of the internal chemical energy of wastewater. Environ Sci Technol 2011;45(2):827–32.
    [10] Cherubini F. The biorefinery concept:using biomass instead of oil for producing energy and chemicals. Energy Convers Manage 2010;51(7):1412–21.
    [11] Gavrilescu M. Biomass potential for sustainable environment, biorefinery products and energy. In:Visa I, editor. Sustainable energy in the built environment—steps towards nZEB. Berlin:Springer; 2014. p. 169–94.
    [12] Directorate-General for Research and Innovation of European Commission. The state and prospects of European energy research:comparison of commission,member and non-member states’ R&D portfolios. Brussels:DirectorateGeneral for Research and Innovation of European Commission; 2006.
    [13] Weiland P. Biogas production:current state and perspectives. Appl Microbiol Biotechnol 2010;85(4):849–60.
    [14] Xu J, Zhou W, Li Z, Wang J, Ma J. Biogas reforming for hydrogen production over a Ni–Co bimetallic catalyst:effect of operating conditions. Int J Hydrog Energy. 2010;35(23):13013–20.
    [15] Yenigün O, Demirel B. Ammonia inhibition in anaerobic digestion:a review.Process Biochem 2013;48(5–6):901–11.
    [16] McCartney D, Oleszkiewicz J. Sulfide inhibition of anaerobic degradation of lactate and acetate. Water Res 1991;25(2):203–9.
    [17] Sun ZY, Yamaji S, Cheng QS, Yang L, Tang YQ, Kida K. Simultaneous decrease in ammonia and hydrogen sulfide inhibition during the thermophilic anaerobic digestion of protein-rich stillage by biogas recirculation and air supply at 60°C. Process Biochem 2014;49(12):2214–9.
    [18] Randall D, Tsui T. Ammonia toxicity in fish. Mar Pollut Bull 2002;45(1–12):17–23.
    [19] Zhang R, Anderson E, Addy M, Deng X, Kabir F, Lu Q, et al. An innovative intermittent-vacuum assisted thermophilic anaerobic digestion process for effective animal manure utilization and treatment. Bioresour Technol2017;244(Pt 1):1073–80.
    [20] Moset V, Poulsen M, Wahid R, H?jberg O, M?ller HB. Mesophilic versus thermophilic anaerobic digestion of cattle manure:methane productivity and microbial ecology. Microb Biotechnol 2015;8(5):787–800.
    [21] Goddek S, Delaide B, Mankasingh U, Ragnarsdottir KV, Jijakli H, Thorarinsdottir R. Challenges of sustainable and commercial aquaponics. Sustainability 2015;7(4):4199–224.
    [22] Barbosa GL, Gadelha FDA, Kublik N, Proctor A, Reichelm L, Weissinger E, et al.Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. Int J Environ Res Public Health 2015;12(6):6879–91.
    [23] Diver S. Aquaponics—integration of hydroponics with aquaculture. Butte:National Center for Appropriate Technology; 2006.
    [24] Tyson RV, Treadwell DD, Simonne EH. Opportunities and challenges to sustainability in aquaponic systems. HortTechnology 2011;21(1):6–13.
    [25] Canakci M, Van Gerpen J. Biodiesel production from oils and fats with high free fatty acids. Trans ASAE 2001;44(6):1429–36.
    [26] Bi Ch, Min M, Nie Y, Xie Q, Lu Q, Deng X, et al. Process development for scum to biodiesel conversion. Bioresour Technol 2015;185:185–93.
    [27] Anderson E, Addy M, Xie Q, Ma H, Liu Y, Cheng Y, et al. Glycerin esterification of scum derived free fatty acids for biodiesel production. Bioresour Technol2016;200:153–60.
    [28] Mu D, Addy M, Anderson E, Chen P, Ruan R. A life cycle assessment and economic analysis of the scum-to-biodiesel technology in wastewater treatment plants. Bioresour Technol 2016;204:89–97.
    [29] Chen P, Xie Q, Du Z, Borges FC, Peng P, Cheng Y, et al. Microwave-assisted thermochemical conversion of biomass for biofuel production. In:Fang Z,Smith RL, Qi X, editors. Production of biofuels and chemicals with microwave. Dordrecht:Springer; 2015. p. 83–98.
    [30] Spath PL, Dayton DC. Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. Report. Golden:National Renewable Energy Laboratory; 2003. Report No.:NREL/TP-510-34929. Contract No.:DEAC36-99-GO10337.
    [31] Anis S, Zainal Z. Tar reduction in biomass producer gas via mechanical,catalytic and thermal methods:a review. Renew Sustain Energy Rev 2011;15(5):2355–77.
    [32] Devi L, Ptasinski KJ, Janssen FJ. A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 2003;24(2):125–40.
    [33] Borges FC, Du Z, Xie Q, Trierweiler JO, Cheng Y, Wan Y, et al. Fast microwave assisted pyrolysis of biomass using microwave absorbent. Bioresour Technol2014;156:267–74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700