用户名: 密码: 验证码:
模拟增温对长江源区高寒沼泽草甸土壤有机碳组分与植物生物量的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of simulated warming on soil organic carbon composition and biomass in alpine swamp meadow in the headwaters region of the Yangtze River
  • 作者:奚晶阳 ; 白炜 ; 尹鹏松 ; 刘永万
  • 英文作者:XI Jingyang;BAI Wei;YIN Pengsong;LIU Yongwan;School of Environmental and Municipal Engineering, Lanzhou Jiaotong University;
  • 关键词:长江源区 ; 模拟增温 ; 高寒沼泽草甸 ; 土壤微生物量 ; 土壤溶解性有机碳 ; 生物量
  • 英文关键词:the headwaters region of the Yangtze River;;simulated warming;;alpine swamp meadow;;soil microbial biomass carbon;;soil dissolved organic carbon;;biomass
  • 中文刊名:STKX
  • 英文刊名:Ecological Science
  • 机构:兰州交通大学环境与市政工程学院;
  • 出版日期:2019-01-15
  • 出版单位:生态科学
  • 年:2019
  • 期:v.38;No.139
  • 基金:国家自然科学基金(41563005);; 兰州交通大学青年科学基金(2015013)
  • 语种:中文;
  • 页:STKX201901013
  • 页数:10
  • CN:01
  • ISSN:44-1215/Q
  • 分类号:95-104
摘要
以高寒沼泽草甸为研究对象,采用开顶室增温小室进行增温模拟实验,设置CK(对照点)、T_1(增温1.5—2.5℃)、T_2(增温3—5℃)3种处理,研究了短期增温对高寒沼泽草甸土壤活性有机碳库及生物量生产的影响。结果表明:(1)T_1增温显著促进土壤微生物量碳(MBC)的生成,T_2增温幅度过大,抑制了微生物的活性,导致这种促进效果在T_2内不显著。(2)T_1, T_2增温均使得0—20 cm土层土壤有机碳(SOC)含量降低, T_1增温促进20—30 cm土层土壤有机碳(SOC)的生成,但这种促进效果在T_2内并不显著。(3)T_1, T_2增温均使得0—20 cm土层土壤溶解性有机碳(DOC)含量降低, 20—30cm土层土壤溶解性有机碳(DOC)含量无明显变化。(4)模拟增温促进了长江源高寒沼泽草甸地上生物量的生成,并且增温幅度越大地上生物量增加越多。T_1增温促进了地下生物量的生成,T_2增温幅度过大,对地下生物量随温度上升而增加的这种促进作用有所抑制。(5)土壤有机碳(SOC),土壤微生物量碳(MBC),土壤溶解性有机碳(DOC)三者碳组分之间均呈显著正相关,表明土壤有机碳(SOC)的变化在一定程度上制约的土壤微生物量碳(MBC)与土壤溶解性有机碳(DOC)的变化。
        This study investigated the short-term effects of simulated warming on soil organic carbon pools and plant biomass in alpine swamp meadow. Open-top chambers were used to simulate climate warming. T_hree treatments were simulated in our experiment: CK(control), T_1(temperature increased by 1.5-2.5 ℃), and T_2(temperature increased by 3-5 ℃). The results are as follows.(1) The soil microbial biomass carbon(MBC) in T_1 plots increased significantly. In T_2 plots, the soil microbial activity might be inhibited due to the over rising temperature, thus the soil MBC was not affected obviously.(2) Soil organic carbon(SOC) at0-20 cm soil depth in the warming plots(T_1, T_2) was significantly higher than that in CK plots. The SOC at 20-30 cm soil depth increased obviously in T_1 plots, but this positive effect was not significant in T_2 plots.(3) Warming(T_1, T_2) increased dissolved organic carbon(DOC) at 0-20 cm soil depth but the DOC at 20-30 cm soil depth was not significantly influenced..(4)Warming(T_1, T_2) showed obvious positive effects on aboveground biomass(AGB), and the greater increase in temperature,the more increase in above-ground biomass. Underground biomass(BGB) increased in T_1 plots, in contrast, the BGB tended to be inhibited in T_2 plots.(5) There were significant positive correlations between SOC, MBC and DOC, indicating that the changes in soil MBC and DOC were restricted by the variations in soil SOC.
引文
[1]牛书丽,韩兴国,马克平,万师强.全球变暖与陆地生态系统研究中的野外增温装置[J].植物生态学报,2007,(02):262-271.
    [2]JONASSON S,MICHELSEN A,SCHMIDT I K,et al.Responses in microbes and plants to changed temperature,nutrient,and light regimes in the arctic[J].Ecology,1999,80:1828-1843.
    [3]RUSTAD L E,CAMPBELL J L,MARION G M,et al.GCTE-NEWS.A meta-analysis of the response of soil respiration,net nitrogen mineralization,and aboveground plant growth to experimental ecosystem warming[J].Oecologia,2001,126:543-562.
    [4]HOU Ying,WANG Kaiyun,ZHANG Chao.Effects of elevated CO2 concentration and temperature on nutrient accumulation and allocation in Betula albo-sinensis seedlings[J].Chinese Journal of Applied Ecology,2008,19(1):13-19.
    [5]COUTEAUX M M,BOTTNER P,BERG B.Litter decomposition,climate and litter quality[J].Trends Ecology Evolution,1995,10(2):63-66.
    [6]李东坡,武志杰,陈利军,等.长期培肥黑土微生物量碳动态变化及影响因素[J].应用生态学报,2004,15(8):1334-1338.
    [7]POELSON D S,BROOKES P C,CHRISTENSEN B T.Measurement of soil microbial biomass provides an early indication of changes in total organic matter due to straw incorporation[J].Soil Biology and Biochemistry,1987,19:159-164.
    [8]NSABIMANA D,HAYNES R J,WALLIS F M.Size,activity and catabolic diversity of the soil microbial biomass as affected by land use[J].Applied Soil Ecology,2004,26:81-92.
    [9]COX P M,BETTS R A,JONES C D,et al.Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J].Nature,2000,408:184-187.
    [10]DAVIDSON E A,TRUMBORE S E,AMUNDSON R.Soil warming and organic carbon content[J].Nature,2000,408:789-790.
    [11]KIRSCHBAUM M U F.Will changes in soil organic carbon act as a positive or negative feedback on global warming[J].Biogeochemistry,2000,48:21-51.
    [12]KALBITZ K,DAVID S,JULIANE S.Changes in properties of soil-derived dissolved organi c matter induced by biodegradation[J].Soil Biol and Biochem,2003,35:1129-1142.
    [13]周国英,陈桂琛,陈志国等.青藏铁路沿线高寒草甸植物群落特征对人为干扰梯度的响应---以风火山高山嵩草草甸为例[J].冰川冻土,2006,28(2):240-249.
    [14]吴中海,吴珍汉,韩金良等.青藏铁路风火山段晚第四纪断裂活动分析[J].现代地质,2005,19(2):182-190.
    [15]李娜,王根绪,高永恒,王俊峰,柳林安.模拟增温对长江源区高寒草甸土壤养分状况和生物学特性的影响研究[J].土壤学报,2010,47(06):1214-1224.
    [16]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006:54-68.
    [17]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [18]BURFORD J R,REMNER B J M.Relationships between the denitrification capacities of soils and total water-soluble and readily decomposable soil organic matter.Soil Biology and Biochemistry,1975,7:389-394.
    [19]王莹,阮宏华,黄亮亮,冯育青,齐艳围.湖造田不同土地利用方式土壤水溶性有机碳的变化[J].南京林业大学学报,2010,34(5):109-114.
    [20]李延茂,胡江春,汪思龙,等.森林生态系统中土壤微生物的作用与应用[J].应用生态学报[J].2004.15(10):1943-1946.
    [21]庞绪,何文清,严昌荣,刘恩科,刘爽,殷涛.耕作措施对土壤水热特性和微生物生物量碳的影响[J].生态学报,2013,33(04):1308-1316.
    [22]HARALD C,TOMAS T,JOHN S.Functional microbial diversity of the railway track bed[J].Science of the Tota1l Environment,2008,397(1):205-214.
    [23]马莉,吕宁,冶军,茹思博,李国峰,侯振安.生物碳对灰漠土有机碳及其组分的影响[J].中国生态农业学报,2012,20(08):976-981.
    [24]孙宝玉,韩广轩.模拟增温对土壤呼吸影响机制的研究进展与展望[J].应用生态学报,2016,27(10):3394-3402.
    [25]]蒋婧,宋明华.植物与土壤微生物在调控生态系统养分循环中的作用[J].植物生态学报,2010,34(08):979-988.
    [26]MELILLO J M,MCGUIRE A D,KICKLIGHTER D W,et al.Global climate change and terrestrial net primary production[J].Nature,1993,363:234-240.
    [27]邱建军,王立刚,李虎,唐华俊,ERIC VAN RANST.农田土壤有机碳含量对作物产量影响的模拟研究[J].中国农业科学.2009,42(01):154-161.
    [28]HU S,FIRESTONE M K,CHAPIN F S,et al.Soil microbial feedbacks to atmospheric CO2 enrichment[J].Trends in Ecology and Evolution,1999(11),14:433-437.
    [29]WALDROP M P,FIRESTONE M K.Altered utilization patterns of young and old soil C by microorganisms caused by temperature shift sand N additions[J].Biogeochemistry,2004,67(2):235-248.
    [30]李娜,王根绪,杨燕,高永恒,柳林安,刘光生.短期增温对青藏高原高寒草甸植物群落结构和生物量的影响[J].生态学报,2011,31(04):895-905.
    [31]NAMBU K,YONEBAYASHI K,Role of dissolved organic matter in translocation of nutrient cations from organic layer materials in coniferous and broad leaf forests[J].Soil Science and Plant Nutrition,1999,45(2):307-319.
    [32]周晓宇,张称意,郭广芬.气候变化对森林土壤有机碳贮藏影响的研究进展[J].应用生态学报,2010,21(07):1867-1874.
    [33]CHRIST J.Temperature and moisture effects on the production of dissolved organic carbon in a spodosol[J].Soil Biology&Biochemistry,1996,28(9):1191-1199.
    [34]李忠佩,张桃林,陈碧云.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系[J].土壤学报,2004,41(4):544-552.
    [35]常晨晖,苟小林,吴福忠,杨万勤,殷睿,熊莉,肖洒.利用海拔差异模拟增温对高山森林土壤溶解性有机碳和有机氮含量的影响[J].应用生态学报,2016,27(03):663-671.
    [36]王一,刘彦春,刘世荣.暖温带森林土壤酶活性对增温的响应及其环境解析[J].林业科学研究,2017,30(01):117-124.
    [37]LIECHTY,HAL O,KUUSEOKS,et al.Dissolved organic carbon in northern hardwood stands with differing acidic inputs and temperature regimes[J].Journal of Environmental Quality,1995,24(5):927-933.
    [38]CHMIELEWSKI F M,ROTZER T.Response of tree phenology to climate change across Europe[J].Agricultural&Forest Meteorology,2001,108(2):101-112.
    [39]MENZEL A.Plant phenological anomalies in Germany and their relation to air temperature and Nao[J].Climatic Change,2003,57:243-263.
    [40]石福孙,吴宁,罗鹏.川西北亚高山草甸植物群落结构及生物量对温度升高的响应[J].生态学报,2008,(11):5286-5293.
    [41]KUDO G,SUZUKI S.Warming effects on growth,production,and vegetation structure of alpine shrubs:a fiveyear experiment in northern Japan[J].Oecologia,2003,135(2):280-287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700