用户名: 密码: 验证码:
GCr15轴承钢中TiN夹杂物聚合机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Aggregation mechanism of TiN inclusion in GCr15 bearing steel
  • 作者:田钱仁 ; 尚德礼 ; 王国承
  • 英文作者:TIAN Qian-ren;SHANG De-li;WANG Guo-cheng;School of Materials and Metallurgy, University of Science and Technology Liaoning;Key Laboratory of Marine Equipment and Applications of Ansteel Group;Key Laboratory of Chemical Metallurgy Engineering Liaoning Province;
  • 关键词:GCr15轴承钢 ; TiN夹杂物 ; 析出 ; 聚集 ; 腔桥力
  • 英文关键词:GCr15 bearing steel;;TiN inclusion;;precipitation;;aggregation;;cavity bridge force
  • 中文刊名:IRON
  • 英文刊名:Journal of Iron and Steel Research
  • 机构:辽宁科技大学材料与冶金学院;鞍钢海工钢国家重点实验室;辽宁省化学冶金工程重点实验室;
  • 出版日期:2018-11-15
  • 出版单位:钢铁研究学报
  • 年:2018
  • 期:v.30
  • 基金:国家自然科学基金资助项目(51634004);; 鞍钢海工钢国家重点实验室-辽宁科技大学合作项目(SKLMEA-USTL-201706)
  • 语种:中文;
  • 页:IRON201811002
  • 页数:9
  • CN:11
  • ISSN:11-2133/TF
  • 分类号:15-23
摘要
在对GCr15轴承钢的扫描电镜观察中发现了尺寸不同的2类TiN夹杂物,包括小尺寸单颗粒TiN和多颗粒聚合TiN。对TiN的热力学计算表明,GCr15轴承钢中TiN夹杂物在固液两相区析出。对TiN生长动力学的计算表明,在初始Ti的质量分数为0.006 0%~0.007 8%和N的质量分数为0.004 9%~0.007 0%,TiN析出的局部冷却速度为0.5~10 K/s,析出温度为1 620~1 640 K的条件下,单颗粒TiN最终析出半径为1~6μm。对多颗粒聚合型TiN形成机制研究表明,其是由单颗粒TiN经历了3个阶段形成的:当有距离较近的单颗粒TiN时,两者之间会自发形成腔桥并通过腔桥力相互吸引靠近;当带有活性的TiN尖端接触后,发生碰撞粗化;各基相发生固相烧结。
        Many different types of TiN inclusions were found in the scanning electron microscope observation of GCr15 bearing steel, including single particle TiN, multi-particle polymerized TiN. The thermodynamic calculation of TiN shows that TiN inclusion in GCr15 bearing steel precipitates in the mushy zone. The calculation of TiN growth kinetics shows that: under the condition that the initial concentration of Ti is 0.006 0 mass%-0.007 8 mass% and the content of N is 0.004 9 mass%-0.007 0 mass%, the local cooling rate of TiN precipitation is 0.5-10 K/s and precipitation temperature is 1 620-1 640 K, the final size of single particle TiN is 1-6 μm. The formation mechanisms on multi-particle polymerized TiN reveal that they are formed by single-particle TiN going through three stages as follows: single-particle TiN inclusions approach together by the cavity bridge force; the collision coarsening occurs around the neck region of inclusions; inclusions and new precipitates are sintered in solid phase state.
引文
[1] 王新华, 姜敏, 于会香, 等. 超低氧特殊钢中非金属夹杂物研究[J]. 炼钢, 2015, 31(6):1.(Wang X H, Jiang M, Yu H X, et al. Investigation on non-metallic inclusions in ultra-low oxygen special steels[J]. Steelmaking, 2015, 31(6):1.)
    [2] Lund T, Akesson J. Oxygen content, oxidic microindusions, and fatigue properties of rolling bearing steels[C]//Hoo J J C. Effect of Steel Manufacturing Processes on the Quality of Bearing Steels. Baltimore: ASTM Intermational, 1988:308.
    [3] Fu J, Zhu J, Di L, et al. Study on the precipitation behavior of TiN in the micro-alloyed steels[J]. Acta Metallrugica Sinica-Chinese Edition, 2000, 36(8):801.
    [4] 金友林, 杨丽珠. 高碳抗疲劳应力钢TiN夹杂物形成机理及控制研究[J]. 安徽冶金, 2012(4):1.(Jin Y L, Yang L Z. The forming mechanism and control of TiN inclusions in round billet of high carbon and anti-fatigue stress steel[J]. Anhui Metallurgy, 2012(4):1.)
    [5] 杨俊, 王新华, 龚志翔, 等. 超低氧车轮钢中TiN夹杂析出的热力学分析及控制[J]. 北京科技大学学报, 2010, 32(9):1138.(Yang J, Wang X H, Gong Z X, et al. Precipitation thermodynamics analysis and control of titanium nitride inclusions in extra-low oxygen wheel steel[J]. Journal of University of Science and Technology Beijing, 2010, 32(9):1138.)
    [6] 张学伟, 张立峰, 杨文, 等. 重轨钢中碳氮化物析出动力学分析与控制[J]. 炼钢, 2016, 32(5):41.(Zhang X W, Zhang L F, Yang W, et al. Dynamics of carbonitrides inclusions precipitation during solidification in heavy rail steels[J]. Steelmaking, 2016, 32(5):41.)
    [7] 薛正良, 金武涛, 雷家柳, 等. 帘线钢生产中钛夹杂的析出与控制[J]. 炼钢, 2016, 32(4):23.(Xue Z L, Jin W T, Lei J L, et al. Precipitation and control of titanium inclusions in tire cord steel production[J]. Steelmaking, 2016, 32(4):23.)
    [8] 田新中, 刘润藻, 周春芳, 等. 轴承钢中TiN夹杂物的控制研究[J]. 北京科技大学学报, 2009, 31(s1):150.(Tian X Z, Liu R Z, Zhou C F, et al. Control of titanium nitride in bearing steel[J]. Journal of University of Science and Technology Beijing, 2009, 31(s1):150.)
    [9] 曾新光. 轴承钢中TiN夹杂物析出的控制[J]. 北京科技大学学报, 2009, 31(s1):145.(Zeng X G. Control of TiN inclusion precipitation in bearing steel[J]. Journal of University of Science and Technology Beijing, 2009, 31(s1):145.)
    [10] Zhou D G, Fu J, Chen X C, et al. Precipitation behavior of TiN in bearing steel[J]. Journal of Materials Science and Technology, 2003, 19(2):184.
    [11] Yang X, Cheng G G, Wang M L, et al. Precipitation and growth of titanium nitride during solidification of clean steel[J]. Journal of University of Science and Technology Beijing: English Edition, 2003, 10(5):24.
    [12] 黄希祜. 钢铁冶金原理[M]. 北京: 冶金工业出版社, 2013.(Huang X H. Iron and Steel Metallurgy Principle[M]. Beijing: Metallurgical Industry Press, 2013.)
    [13] Gulliver G M. Metallic Alloys[M]. London: Griffen, 1922.
    [14] Scheil E. Influence of cooling rate on microsegregation behavior of magnesium alloys[J]. Zeitschrift Metallkunde, 1942, 34:70.
    [15] Chen P, Zhu C, Li G. Effect of sulphur concentration on precipitation behaviors of MnS-containing inclusions in GCr15 bearing steels after LF refining[J]. ISIJ International, 2017, 57(6):1019.
    [16] Ma W J, Bao Y P, Zhao L H. Control of the precipitation of TiN inclusions in gear steels[J]. International Journal of Minerals, Metallurgy and Materials. 2014, 21(3):234.
    [17] Yin H, Shibata H, Emi T. "In-situ" observation of collision, agglomeration and cluster formation of alumina inclusion particles on steel melts[J]. ISIJ International, 1997, 37(10):936.
    [18] Yin H., Shibata H, Emi T. Characteristics of agglomeration of various inclusion particles on molten steel surface[J]. ISIJ International, 1997, 37(10):946.
    [19] Shibata H, Yin H, Yoshinaga S. In-situ observation of engulfment and pushing of nonmetallic inclusions in steel melt by advancing melt/solid interface[J]. ISIJ International, 1998, 38(2):149.
    [20] 陈家祥. 炼钢常用图表数据[M]. 北京: 冶金工业出版社, 2010.(Chen J X. Manual of Chart and Data in Common Use of Steelmaking[M]. Beijing: Metallurgical Industry Press, 2010.)
    [21] Sasai K. Interaction between alumina inclusions in molten steel due to cavity bridge force[J]. ISIJ International, 2016, 56(6):1013.
    [22] Sasai K. Direct measurement of agglomeration force exerted between alumina particles in molten steel[J]. ISIJ International 2014, 54(12):2780.
    [23] Bratko D, Curtis R A, Blanch H W, et al. Interaction between hydrophobic surfaces with metastable intervening liquid[J]. The Journal of Chemical Physics, 2001, 115(8):3873.
    [24] Singh S, Houston J, Van Swol F, et al. Superhydrophobicity: Drying transition of confined water[J]. Nature, 2006, 442(7102):526.
    [25] Ishida N, Inoue T, Miyahara M, et al. Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy[J]. Langmuir, 2000, 16(16):6377.
    [26] Parker J L, Claesson P M, Attard P. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces[J]. The Journal of Physical Chemistry, 1994, 98(34):8468.
    [27] Carambassis A, Jonker L C, Attard P, et al. Forces measured between hydrophobic surfaces due to a submicroscopic bridging bubble[J]. Physical Review Letters, 1998, 80(24):5357.
    [28] Podgornik R. Electrostatic correlation forces between surfaces with surface specific ionic interactions[J]. The Journal of Chemical Physics, 1989, 91(9):5840.
    [29] 吴铿. 冶金传输原理[M]. 北京: 冶金工业出版社, 2011.(Wu K. Principles of Metallurgical Transport[M]. Beijing: Metallurgical Industry Press, 2011.)
    [30] Lu Y, Song S, Shen X, et al. Low-power phase change memory with multilayer TiN/W nanostructure electrode[J]. Applied Physics, 2014, 117A(4):1933.
    [31] Podgornik R. Electrostatic correlation forces between surfaces with surface specific ionic interactions[J]. Journal of Chemical Physics, 1989, 91(9):5840.
    [32] Johnson J L, German R M. Advances in powder metallurgy and particulate materials[J]. The International Journal of Powder Metallurgy, 1993, 4(1):201.
    [33] Johnson J L, Hens K F, German R M. Tungsten and Refractory Metals-1994[M]. Princeton: Metal Powder Industry Federation, 1995:246.
    [34] Johnson J L, German R M. Theoretical modeling of densification during activated solid-state sintering[J]. Metallurgical and Materials Transactions, 1996, 27A:441.
    [35] Johnson J L, German R M. Solid-state contributions to densification during liquid-phase sintering[J]. Metallurgical and Materials Transactions, 1996, 27B(6):901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700