用户名: 密码: 验证码:
静电纺丝制备聚己内酯血管支架及其性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Properties of Polycaprolactone Vascular Stent by Electrospinning
  • 作者:孙天舒 ; 范传杰 ; 常瑶 ; 胡呈元 ; 周晓东
  • 英文作者:Sun Tianshu;Fan Chuanjie;Chang Yao;Hu Chengyuan;Zhou Xiaodong;Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of science and technology;
  • 关键词:聚己内酯 ; 静电纺丝 ; 浓度 ; 黏度 ; 人工血管支架 ; 冷等离子体处理
  • 英文关键词:polycaprolactone;;electrospinning;;concentration;;viscosity;;artificial blood vessel stent;;cold plasma treatment
  • 中文刊名:ACSN
  • 英文刊名:Engineering Plastics Application
  • 机构:华东理工大学上海市多相结构材料化学工程重点实验室;
  • 出版日期:2019-06-10
  • 出版单位:工程塑料应用
  • 年:2019
  • 期:v.47;No.356
  • 基金:上海市优秀学术/技术带头人计划资助项目
  • 语种:中文;
  • 页:ACSN201906004
  • 页数:7
  • CN:06
  • ISSN:37-1111/TQ
  • 分类号:18-23+35
摘要
采用聚己内酯(PCL)为纺丝原料,利用自制的静电纺丝设备制备了人工血管支架。研究了溶液浓度对血管支架的微观形貌、纤维直径及分布、力学性能、孔隙率以及接触角的影响。研究结果表明,在温度为30℃、相对湿度50%、纺丝电压22.5kV,接收距离17.5cm、二氯甲烷与N,N–二甲基甲酰胺体积比为7∶3的纺丝条件下,PCL溶液浓度为0.2g/mL时,其力学性能和孔隙率最佳,轴向拉伸强度为(4.35±0.05)MPa,径向拉伸强度为(4.66±0.07)MPa,轴向拉伸弹性模量为(23.70±0.01)MPa,孔隙率为(74.4±0.1)%,而接触角为105.6°,纤维直径为(509.9±68.3)nm,提高了血管支架的力学性能和孔隙率。通过冷等离子体处理120s,最终得到轴向拉伸强度为(4.10±0.05)MPa,径向拉伸强度为(4.39±0.05)MPa,轴向拉伸弹性模量为(21.20±0.15)MPa,孔隙率为(74.6±0.2)%,接触角为(60.7±2.3)°的PCL血管支架,处理后的力学性能未发生大幅度下降,孔隙率基本没有变化,提高了支架的亲水性。
        An artificial blood vessel stent was prepared by using a self-made electrospinning machine with polycaprolactone(PCL) as a spinning raw material. The effects of solution concentration on the microscopic morphology,fiber diameter and distribution,mechanical properties,porosity and contact angle of vascular stents were studied. The results show that under the spinning conditions of temperature 30℃,relative humidity 50%,spinning voltage 22.5 kV,receiving distance 17.5 cm,the volume ratio of dichloromethane to N,N-dimethylformamide is 7∶3,when the PCL solution concentration is 0.20 g/mL,the mechanical properties and porosity of artificial blood vessel stent are optimal. The axial tensile strength is(4.35±0.05) MPa,the radial tensile strength is(4.66±0.07) MPa,the axial tensile elastic modulus is(23.70±0.01) MPa,the porosity is(74.4±0.1)% and the contact angle is 105.6°,the fiber diameter is(509.9±68.3) nm and the mechanical properties and porosity of the stent are improved. Through cold plasma treatment of 120 s,a PCL stent having the axial tensile strength is(4.10±0.05) MPa,the radial tensile strength is(4.39±0.05) MPa,the axial tensile elastic modulus is(21.20±0.15) MPa,the porosity is(74.6±0.2)%,the contact angle is(60.7±2.3)° was prepared,the mechanical properties do not decrease significantly,the porosity do not change substantially,and the hydrophilicity of the stent is increased.
引文
[1]Karuppuswamy P,Venugopal J R,Navaneethan B,et al.Polycaprolactone nanofibers for the controlled release of tetracycline hydrochloride[J].Materials Letters,2015,141:180-186.
    [2]Yang Liqun,Li Jianxin,Jin Ying,et al.In vitro enzymatic degradation of the cross-linked poly(ε-caprolactone)implants[J].Polymer Degradation and Stability,2015,112:10-19.
    [3]Croisier F,Duwez A S,Jerome C,et al.Mechanical testing of electrospun PCL fibers[J].Acta Biomaterialia,2012,8(1):218-224.
    [4]林皓,胡家朋,刘瑞来,等.聚乳酸接枝丙烯酸纳米孔纤维膜制备及其细胞相容性研究[J].现代化工,2017,37(6):94-97,99.Lin Hao,Hu Jiapeng,Liu Ruilai,et al.Preparation and cytocompatibility of nanoporous PLLA grafting acrylate acid fibrous membrane[J].Modern Chemical Industry,2017,37(6):94-97,99.
    [5]王金茹,倪晓慧,程万里,等.CNCs增强PCL复合纤维支架的静电纺丝制备及其性能表征[J].林业工程学报,2018,3(1):83-88.Wang Jinru,Ni Xiaohui,Cheng Wanli,et al.Fabrication and characterization of electro-spun composite fibrous scaffolds for tissue engineering by CNCs-reinforced PCL[J].Journal of Forestry Engineering,2018,3(1):83-88.
    [6]Duan Nannan,Geng Xue,Ye Lin,et al.A vascular tissue engineering scaffold with core-shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation[J].Biomedical Materials,2016,11(3):doi:10.1088/1748-6041/11/3/035007.
    [7]Asvar Z,Mirzaei E,Azarpira N,et al.Evaluation of electrospinning parameters on the tensile strength and suture retention strength of polycaprolactone nanofibrous scaffolds through surface response methodology[J].Journal of the Mechanical Behavior of Biomedical Materials,2017,75:369-378.
    [8]Stafiej P,Küng F,Thieme D,et al.Adhesion and metabolic activity of human corneal cells on PCL based nanofiber matrices[J].Mater Sci Eng C Mater Biol Appl,2017,71:764-770.
    [9]Padalhin A R,Nguyen T B L,Ki Min Y,et al.Evaluation of the cytocompatibility hemocompatibility in vivo bone tissue regenerating capability of different PCL blends[J].Journal of Biomaterials Science,Polymer Edition,2014,25(5):487-503.
    [10]丁彬,俞建勇.静电纺丝与纳米纤维[M].北京:中国纺织出版社,2011:33-39.Ding Bin,Yu Jianyong.Electrospinning and Nanofibers[M].Beijing:China Textile&Apparel Press,2011:33-39.
    [11]Lin Jinyou,Ding Bin,Yu Jianyong,et al.Direct fabrication of highly nanoporous polystyrene fibers via electrospinning[J].ACSApplied Materials&Interfaces,2010,2(2):521-528.
    [12]He Wei,Yong T,Teo W E,et al.Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers:potential vascular graft for blood vessel tissue engineering[J].Tissue Engineering,2005,11(9-10):1 574-1 588.
    [13]Yu Aibing,Standish N.Estimation of the porosity of particle mixtures by a linear-mixture packing model[J].Industrial&Engineering Chemistry Research,1991,30(6):1 372-1 385.
    [14]李小兵,刘莹.微观结构表面接触角模型及其润湿性[J].材料导报,2009,23(24):101-103.Li Xiaobing,Liu Ying.Contact angle model and wettability on the surfaces with microstructures[J].Materials Review,2009,23(24):101-103.
    [15]Attia H,Johnson D J,Wright C J,et al.Robust superhydrophobic electrospun membrane fabricated by combination of electrospinning and electrospraying techniques for air gap membrane distillation[J].Desalination,2018,446:70-82.
    [16]Koysuren O,Koysuren H N.Characterization of poly(methyl methacrylate)nanofiber mats by electrospinning process[J].J ournal of Macromolecular Science:Part A-Chemistry,2016,53(11):691-698.
    [17]Chang Yao,Li Junjie,Sun Tianshu,et al.Grafting starch nanocrystals onto the surface of sisal fibers and consequent improvement of interfacial adhesion in sisal reinforced starch composite[J].Journal of Applied Polymer Science,2019,136(11):doi:10.1002/app.47202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700