用户名: 密码: 验证码:
楔形减阻旋耕刀设计与试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and test of wedge drag reduction rotary blade
  • 作者:郝建军 ; 于海杰 ; 赵建国 ; 李建昌 ; 马志凯 ; 蔡金金
  • 英文作者:Hao Jianjun;Yu Haijie;Zhao Jianguo;Li Jianchang;Ma Zhikai;Cai Jinjin;College of Mechanical and Electrical Engineering, Hebei Agricultural University;
  • 关键词:农业机械 ; 土壤 ; 模型 ; 楔形减阻旋耕刀 ; 田间试验
  • 英文关键词:agricultural machinery;;soil;;models;;wedge drag reduction rotary blade;;field experiment
  • 中文刊名:NYGU
  • 英文刊名:Transactions of the Chinese Society of Agricultural Engineering
  • 机构:河北农业大学机电工程学院;
  • 出版日期:2019-04-23
  • 出版单位:农业工程学报
  • 年:2019
  • 期:v.35;No.360
  • 基金:国家重点研发计划(2017YFD0300907)
  • 语种:中文;
  • 页:NYGU201908007
  • 页数:10
  • CN:08
  • ISSN:11-2047/S
  • 分类号:63-72
摘要
为解决旋耕整地作业阻力大、能耗高等问题,该文基于旋耕刀理论受力模型设计了一种楔形减阻旋耕刀。采用Inventor和HyperMesh软件分别创建国标旋耕刀及楔形减阻旋耕刀的三维模型和切削土壤模型,分析了楔形减阻旋耕刀的应力强度,对比了国标旋耕刀与楔形减阻旋耕刀的切削阻力。通过田间试验对比了国标旋耕刀与楔形减阻旋耕刀的扭矩、功耗与碎土率。结果表明:楔形减阻旋耕刀所受最大应力为29.49 MPa,远小于材料的屈服强度430 MPa,在保证刀身强度的前提下,与国标旋耕刀相比,楔形减阻旋耕刀质量减轻8.3%;平均切削阻力较国标旋耕刀下降10.65%。在相同工况条件下,楔形减阻旋耕刀的平均扭矩为648.916 N·m,较国标旋耕刀下降11.35%;楔形减阻旋耕刀的平均功耗为67.3kW,较国标旋耕刀下降9.29%,碎土率提高4%,耐磨性能与国标旋耕刀持平,能够达到在降低作业功耗的同时,提高耕作质量并保证刀具使用寿命。
        In order to solve the problems of high resistance and high power consumption of rotary tillage and land preparation, the rotary blade is studied based on theoretical analysis, simulation and field experiment in this paper. First, a wedge drag reduction rotary blade is designed based on the theoretical force model of cutting tools in mechanical soil dynamics. Second, the three-dimensional model of the national rotary blade and the wedge drag reduction rotary blade is established by using the Inventor software and the simulation experiment is carried on. The cutting soil model of 2 kinds of rotary blades is established by using HyperMesh software, and the material parameters, boundary constraints and working parameters are defined. On this basis, the soil cutting process, stress and cutting resistance are analyzed. It is proved that the wedge drag reduction rotary blade design is reasonable. In order to verify whether the wedge drag reduction rotary blade meets the strength requirement, the stress of the rotary blades is analyzed, and the cutting resistance of the national rotary blade and the wedge drag reduction rotary blade are compared. Third, field comparative experiments are carried out on national rotary blade and wedge drag reducing rotating blade with the evaluation indexes of torque, power consumption and soil breakage. The results show that the cutting resistance of the wedge drag reduction rotary blade is smaller than that of the national rotary blade; the maximum stress of the national rotary blade is 35.68 MPa and the maximum stress of the wedge drag reduction rotary blade is 29.49 MPa, which is less than that of the national rotary blade and far less than the yield strength of the material 430 MPa. On the premise of ensuring the strength of the blade body, the weight of the wedge drag reduction rotary blade is reduced by about 50 g, which is about 8.3% lower than that of the national rotary blade. The maximum cutting resistance of the national rotary blade is 530 N, the average cutting resistance is 375.5 N, and the maximum cutting resistance of the wedge drag reduction rotary blade is 510 N, the average cutting resistance is 335.5 N, the average cutting resistance of the wedge drag reduction rotary blade is 10.65% lower than that of the national rotary blade, which proves the feasibility of the wedge drag reduction rotary blade designed; The average torque of the wedge drag reduction rotary blade is 11.35% lower than that of the national rotary blade. In the working process of rotary blades, the average power consumption of the national rotary blade is 74.2 kW, the average power consumption of the wedge drag reduction rotary blade is 67.3 kW, and the average power consumption of the wedge drag reduction rotary blade is 9.29% lower than that of the national rotary blade. The average breaking rate of soil of the national rotary blade is 75%, and the average breaking rate of wedge drag reduction rotary blade is 79%, which is 4% higher than that of the national rotary blade; After continuous 33 hm2 tillage, rotary blades did not break, and the average wear of the national rotary blade is 98.5 g, the average wear of the wedge shaped drag reduction rotary blade is 97.3 g, the wear difference is 1.3%, and the wear degree is the same. The wedge drag reduction rotary blade can effectively solve the problems of high resistance and high power consumption of rotary blade, which is helpful to accelerate the development of arable land machinery, improve the mechanization level of cultivated land, and reduce the production cost of crops.
引文
[1]车刚,张伟,万霖,等.基于灭茬圆盘驱动旋耕刀多功能耕整机设计与试验[J].农业工程学报,2012,28(20):34-40.Che Gang,Zhang Wei,Wan Lin,et al.Design and experiment of multifunctional tillage machine with driven bent blade by stubble ploughing disk[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2012,28(20):34-40.(in Chinese with English abstract)
    [2]Temesgen M,Hoogmoed W B,Rockstrom J,et al.Conservation tillage implements and systems for smallholder farms insemi-arid Ethiopia[J].Soil and Tillage Research,2009,104(1):185-191.
    [3]熊平原,杨洲,孙志全,等.基于离散元法的旋耕刀三向工作阻力仿真分析与试验[J].农业工程学报,2018,34(18):113-121.Xiong Pingyuan,Yang Zhou,Sun Zhiquan,et al.Simulation analysis and experiment for three-axis working resistances of rotary blade based on discrete element method[J].Transactions of tne Chinese Society of Agricultural Engineering(Transactions of the CSAE),2018,34(18):113-121.(in Chinese with English abstract)
    [4]方会敏,姬长英,张庆怡,等.基于离散元法的旋耕刀受力分析[J].农业工程学报,2016,32(21):54-59.Fang Huimin,Ji Changying,Zhang Qingyi,et al.Force analysis of rotary blade based on distinct element method[J].Transactions of tne Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(21):54-59.(in Chinese with English abstract)
    [5]张居敏,周勇,夏俊芳,等.旋耕埋草机螺旋横刀的数学建模与参数分析[J].农业工程学报,2013,29(1):18-25.Zhang Jumin,Zhou Yong,Xia Junfang,et al.Mathematical modeling and analysis of helical blade for stul rotary tiller[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2013,29(1):18-25.(in Chinese with English abstract)
    [6]贾洪雷,汲文峰,韩伟峰,等.旋耕-碎茬通用刀片结构参数优化试验[J].农业机械学报,2009,40(7):45-50.Jia Honglei,Ji Wenfeng,Han Weifeng,et al.Optimization experiment of structure parameters rototilling and stubble breaking universal blade[J].Transactions of the Chinese Society for Agricultural Machinery,2009,40(7):45-50.(in Chinese with English abstract)
    [7]汤楚宙,谢方平,向卫兵,等.自推进耕耘机械研究现状与分析[J].农业机械学报,2001,32(5):112-114.Tang Chuzhou,Xie Fangping,Xiang Weibing,et al.Current situation of study on self-propelled cultivation machine[J].Transactions of the Chinese Society for Agricultural Machinery,2001,32(5):112-114.(in Chinese with English abstract)
    [8]陈雪,张周,黄化刚,等.基于ADAMS旋耕刀工作参数优化及ANSYS仿真分析[J].现代农业科技,2018(2):167-170.Chen Xue,Zhang Zhou,Huang Huagang,et al.Optimization of rotary blade working parameters based on ADAMS and ANSYS simulation analysis[J].Modern Agricultural Sciences and Technology,2018(2):167-170.(in Chinese with English abstract)
    [9]盖超,董玉平.基于COSMOS的还田机械旋耕刀弯折角优化[J].农机化研究,2011,33(3):30-33.Gai Chao,Dong Yuping.Optimization of bending angle of rotary machine rotary tilling blade based on COSMOS[J].Journl of Agricultural Mechanization Research,2011,33(3):30-33.(in Chinese with English abstract)
    [10]康松林.微耕机刀具的有限元分析及优化[D].重庆:重庆理工大学,2015.Kang Songlin.Finite Element Analysis and Optimization of the Tool of Rotary Tillers[D].Chongqing:Chongqing University of Technology,2015.(in Chinese with English abstract)
    [11]Butson M J,Mac I D.Vibratory cutting soil tank studies of draught and power requirements[J].Journal of Terramechanics,2004,40(1):186-190.
    [12]殷涌光,程悦荪,李俊明.振动式二维切削土壤减小阻力机理[J].农业机械学报,1992,23(2):11-16.Yin Yongguang,Cheng Yuesun,Li Junming.The reasons of resistance reduction for vibaatory cutting soil in two directions[J].Transactions of the Chinese Society for Agricultural Machinery,1992,23(2):11-16.(in Chinese with English abstract)
    [13]高洁,赵颖娣,Willem Hoogmoed,等.基于ALE有限元仿真的土壤切削振动减阻[J].农业工程学报,2012,28(增刊1):33-38.Gao Jie,Zhao Yingdi,Willem Hoogmoed,et al.Numerical simulation on resistance reduction of soil vibratory tillage using ALE equation[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2012,28(Supp.1):33-38.(in Chinese with English abstract)
    [14]蒋建东,高洁,赵颖娣,等.土壤旋切振动减阻的有限元分析[J].农业机械学报,2012,43(1):58-62.Jiang Jiandong,Gao Jie,Zhao Yingdi,et al.Finite element simulation and analysis on soil rotary tillage with external vibration excitation[J].Transactions of the Chinese Society for Agricultural Machinery,2012,43(1):58-62.(in Chinese with English abstract)
    [15]陈秉聪,任露泉,李安琪,等.蚯蚓体表液收取方法的初步研究[J].农业工程学报,1990,6(2):7-12.Chen Bingcong,Ren Lunquan,Li Anqi,et al.Initial study on the method of collecting the body surface fluid of erathworms[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),1990,6(2):7-12.(in Chinese with English abstract)
    [16]李晓鹏.马铃薯耦合仿生挖掘及其减阻研究[D].成都:西华大学,2018.Li Xiaopeng.Research on Potato Coupled-Bionic Digging and its Drag Reduction[D].Chengdu:Xihua University.2018.(in Chinese with English abstract)
    [17]汲文峰,贾洪雷,佟金.旋耕-碎茬仿生刀片田间作业性能的试验研究[J].农业工程学报,2012,28(12):24-30.Ji Wenfeng,Jia Honglei,Tong Jin.Experiment on working performance of bionic blade for soil-rototilling and stubble-breaking[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2012,28(12):24-30.(in Chinese with English abstract)
    [18]郭俊,张庆怡,Muhammad Sohail Memon,等.仿鼹鼠足趾排列的旋耕-秸秆粉碎锯齿刀片设计与试验[J].农业工程学报,2017,33(6):43-50.Guo Jun,Zhang Qingyi,Muhammad Sohail Memon,et al.Design and experiment of bionic mole’s toe arrangement serrated blade for soil-rototilling and straw-shattering[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(6):43-50.(in Chinese with English abstract)
    [19]薛维良.仿生减阻双圆盘开沟器设计与研究[D].长春:吉林大学,2017.Xue Weiliang.Design and Research on Bionic Double Disc Opner with Drag Reducing[D].Changchun:Jilin University,2017.(in Chinese with English abstract)
    [20]杨晓东,任露泉.形体减阻类型、减阻机理与仿生[J].农业机械学报,2003,18(1):130-133.Yang Xiaodong,Ren Luquan.Typers and mechanisms of shape drag reduction[J].Transactions of the Chinese Society for Agricultural Machinery,2003,18(1):130-133.(in Chinese with English abstract)
    [21]张清珠.仿生几何结构表面土壤镇压辊[D].长春:吉林大学,2014.Zhang Qingzhu.Soil Press Roller with Bionically Geometrically Structured Surfaces[D].Changchun:Jilin University,2014.(in Chinese with English abstract)
    [22]丁为民,徐志刚,汪小函.斜置旋耕刀滑切角及其方程[J].农业工程学报,2002,18(3):49-53.Ding Weimin,Xu Zhigang,Wang Xiaohan.Grass sliding cutting angles and their equations of oblique rotary blades[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2002,18(3):49-53.(in Chinese with English abstract)
    [23]刘永清,桑正中.潜土逆转旋耕刀数学模型及参数优化[J].农业工程学报,2000,16(4):88-91.Liu Yongqing,Sang Zhengzhong.Mathematical model of submerged reverse-rotary tiller and parameters optimization[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2000,16(4):88-91.(in Chinese with English abstract)
    [24]曾德超.机械土壤动力学[M].北京:北京科学技术出版社.1995.
    [25]赵家丰,汪伟,孙中兴,等.均质土壤承压下陷模型改进及验证[J].农业工程学报,2016,32(21):60-66.Zhao Jiafeng,Wang Wei,Sun Zhongxing,et al.Improvement and verification of pressure-sinkage model in homogeneous soil[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2016,32(21):60-66.(in Chinese with English abstract)
    [26]熊平原,杨洲,孙志全,等.旋耕刀三向工作阻力试验及作业参数优化[J].农业工程学报,2017,33(19):51-58.Xiong Pingyuan,Yang Zhou,Sun Zhiquan,et al.Experiment on three-axis working resistances of rotary blade and working parameters optimization[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2017,33(19):51-58.(in Chinese with English abstract)
    [27]Gill,Vanden Berg.Soil dynamics in tillage and traction[J].Journal of Terramechanics,1968,5(4):65-66.
    [28]郑侃,何进,李洪文,等.基于离散元深松土壤模型的折线破土刃深松铲研究[J].农业机械学报,2016,47(9):62-72.Zheng Kan,He Jin,Li Hongwen,et al.Research on polyline soil-breaking blade subsoiler based on subsoiling soil model using discrete element method[J].Transactions of the Chinese Society for Agricultural Machinery,2016,47(9):62-72.(in Chinese with English abstract)
    [29]朱留宪.基于SPH算法的微耕机旋耕刀有限元仿真与优化[D].重庆:西南大学,2012.Zhu Liuxian.Finite Elements Simulation and Optimization of Rotary Blade of Mini-Tiller Based on SPH Algrithm[D].Chongqing:Southwest University,2012.(in Chinese with English abstract)
    [30]卢彩云,何进,李洪文,等.基于SPH算法的平面刀土壤切削过程模拟[J].农业机械学报,2014,45(8):134-139.Lu Caiyun,He Jin,Li Hongwen,et al.Simulation of soil cutting process by plane blade based on SPH method[J].Transactions of the Chinese Society for Agricultural Machinery,2014,45(8):134-139.(in Chinese with English abstract)
    [31]顾耀权,贾洪雷,郭慧,等.滑刀式开沟器设计与试验[J].农业机械学报,2013,44(2):38-42.Gu Yaoquan,Jia Honglei,Guo Hui,et al.Design and experiment of sliding knife furrow openner[J].Transactions of the Chinese Society for Agricultural Machinery,2013,44(2):38-42.(in Chinese with English abstract)
    [32]中国机械工业联合会.旋耕机:GB/T 5668-2008[S].北京:中国标准出版社.2009.
    [33]刘谦文,杨有刚.基于ANSYS/LS-DYNA的旋耕刀强度和功耗研究[J].中国农机化学报,2017,38(6):16-19.Liu Qianwen,Yang Yougang.Research on strength and power consumption of rotary blade based on ANSYS/LS-DYNA[J].Journal of Chinese Agricultural Mechanization,2017,38(6):16-19.(in Chinese with English abstract)
    [34]葛云,吴雪飞,王磊,等.基于ANSYS微型旋耕机旋耕弯刀的应力仿真[J].石河子大学学报:自然科学版,2007,25(5):627-629.Ge Yun,Wu Xuefei,Wang Lei,et al.The strss simulation for the rotary blade of self propelled rotary cultivator based on ANSYS[J].Journal of Shihezi University:Natural Science,2007,25(5):627-629.(in Chinese with English abstract)
    [35]方会敏.基于离散元法的秸秆-土壤-旋耕刀相互作用机理研究[D].南京:南京农业大学,2016.Fang Huimin.Research on the Straw-Soil-Rotary Blade Interaction Using Discrete Element[D].Nanjing:Nanjing Agricultural University,2016.(in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700