用户名: 密码: 验证码:
含铜AZ31镁合金的腐蚀行为
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Corrosion behavior of Cu-containing AZ31 magnesium alloy
  • 作者:周苗 ; 刘楚明 ; 高永浩 ; 许诗源 ; 蒋树农
  • 英文作者:ZHOU Miao;LIU Chu-ming;GAO Yong-hao;XU Shi-yuan;JIANG Shu-nong;School of Materials Science and Engineering, Central South University;Light Alloy Research Institute, Central South University;Key Laboratory of Nonferrous Materials Science and Engineering, Ministry of Education,Central South University;
  • 关键词:AZ31-xCu合金 ; AlCuMg相 ; 腐蚀速率 ; 微电偶腐蚀阴极 ; 镁基体阳极
  • 英文关键词:AZ31-xCu alloy;;AlCuMg phase;;corrosion rate;;micro-galvanic cathode;;anodic magnesium matrixe
  • 中文刊名:ZYXZ
  • 英文刊名:The Chinese Journal of Nonferrous Metals
  • 机构:中南大学材料科学与工程学院;中南大学轻合金研究院;中南大学有色金属材料科学与工程教育部重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:中国有色金属学报
  • 年:2019
  • 期:v.29;No.238
  • 基金:国家自然科学基金资助项目(51574291);; 国家重点基础研究发展计划(2013CB632200)~~
  • 语种:中文;
  • 页:ZYXZ201901003
  • 页数:9
  • CN:01
  • ISSN:43-1238/TG
  • 分类号:24-32
摘要
借助扫描电子显微镜(SEM)和X射线衍射(XRD)对AZ31-xCu(x=0,0.5,1.5,3,质量分数,%)合金的铸态组织、相结构及表面腐蚀形貌进行测试和分析。采用浸泡试验和电化学试验对研究合金在3.5%氯化钠溶液中的腐蚀行为进行系统地对比研究。结果表明:随铜含量的增加,研究合金中的主要第二相AlCuMg相递增;腐蚀过程的主要腐蚀机制是微电偶腐蚀,AlCuMg相作为微电偶腐蚀阴极与镁基体阳极构成微电偶腐蚀对,随AlCuMg相体积分数增加,形成的微电偶腐蚀对增多,相应的腐蚀速率增大。当铜含量为3%时,研究合金的腐蚀速率最大,研究合金的析氢速率和腐蚀电流密度分别为:75mL/(cm~2·d)和698μA/cm~2。
        The as-cast microstructure, phase composition and surface corrosion morphologies of AZ31-x Cu(x=0, 0.5, 1.5,3, mass fraction, %) alloys were observed by scanning electron microscope(SEM) equipped with energy dispersive spectroscope(EDS) and X-ray diffraction(XRD). The corrosion behavior of the alloys in 3.5% NaCl solution was investigated by immersion test and electrochemical test. The results indicate that the content of AlCuMg phase, main secondary phase in the Cu-containing alloys, is positively dependent on copper concentration. Acceleration of corrosion rate is found in Cu-containing alloys due to micro-galvanic corrosion. AlCuMg phase acts as micro-galvanic cathode against anodic magnesium matrixes. The corrosion rate of the alloy with Cu content of 3% is the fastest. The AZ31-3 Cu alloy exhibits the maximum hydrogen evolution rate of 275 mL/(cm~2·d~(---1)) and corrosion current density of 698 μA/cm~2.
引文
[1]PAN Fu-sheng,ZHANG Jing,WANG Jing-feng,YANGMing-bo,HAN En-hou,CHEN Rong-shi.Key R&D activities for development of new types of wrought magnesium alloys in China[J].The Chinese Journal of Nonferrous Metals,2010,20(7):1249-1258.
    [2]毕广利,李元东,黄晓峰,陈体军,马颖,郝远.Zn含量对铸态Mg-Dy合金显微组织和力学性能的影响[J].中国有色金属学报,2015,25(4):875-882.BI Guang-li,LI Yuan-dong,HUANG Xiao-feng,CHEN Ti-jun,MA Ying,HAO Yuan.Effects of Zn addition on microstructure and mechanical properties of as-cast Mg-Dy alloy[J].The Chinese Journal of Nonferrous Metals,2015,25(4):875-882.
    [3]SMITH C.Editor’s comment on:The history of biodegradable magnesium implants:A review[J].Acta Biomaterialia,2015,23(S):s27.
    [4]李琮,李明照,王跃琪,许并.Nd对挤压态AZ31镁合金耐腐蚀性能的影响[J].稀有金属材料与工程,2011,40(1):156-160.LI Zong,LIU Ming-zhao,WANG Yue-qi,XU Bing.Effect of Nd on the corrosion resistance of extruded AZ31 magnesium alloy[J].Rare Metal Materials and Engineering,2011,40(1):156-160.
    [5]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004:284-307.ZHANG Jin,ZHANG Zong-he.Magnesium alloy and its application[M].Beijing:Chemical Industry Press,2004:284-307.
    [6]SONG Ying-wei,SHAN Da-yong,CHEN Rong-shi,ZANG Fan,HAN En-hou.Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid[J].Materials Science&Engineering C,2009,29(3):1039-1045.
    [7]刘莉,冯艳,王日初,彭超群,李晓庚.均匀化退火及挤压对Mg-Hg-Ga合金显微组织和耐腐蚀性能的影响[J].中国有色金属学报,2017,27(1):32-39.LIU Li,PENG Yan,WANG Ri-Chu,PENG Chao-qun,LIXiao-geng.Effect of homogenizing annealing and extrusion on microstructure and corrosion resistance of Mg-Hg-Ga alloy[J]The Chinese Journal of Nonferrous Metals,2017,27(1):32-39.
    [8]张万友,刘艇安,郭博闻,付振波.合金化及热处理工艺对镁阳极性能影响的研究进展[J].腐蚀科学与防护技术,2016,28(2):179-183.ZHANG Wan-you,LIU Ting-an,GUO Bo-wen,FU Zhen-bo.Review of alloying and heat treatment process on performance of magnesium anode[J]Corrosion Science and Protection Technology,2016,28(2):179-183.
    [9]蔡年生.国外鱼雷动力电池的发展及应用[J].鱼雷技术,2003,11(1):12-16.CAI Nian-sheng.The development and application of the torpedo power battery abroad[J].Torpedo Technology,2003,11(1):12-16.
    [10]CONTRERAS J D,DURST D G,HARRIS J T,WATSON D R.High-impact techniques and technology increase ultimate recovery in tight gas formations[J].2008,DOI:10.2118/115081-MS.
    [11]肖代红,李秀秀,朱哲民.一种轻质耐压快速分解的铸造镁合金:CN,103343271 B[P].2013-10-09.XIAO Dai-hong,LI Xiu-xiu,ZHU Zhe-ming.A cast magnesium alloys with light pressure and accelerated degradation:CN,103343271 B[P].2013-10-09.
    [12]吴从波,王渠东,赵鹏.Fe、Ni、Cu对AXJ530镁合金腐蚀性能的影响[J].特种铸造及有色合金,2006,26(11):736-738.WU Cong-bo,WANG Qu-Dong,ZHAO Peng.Effect of Fe,Ni,Cu on corrosion performance of AXJ530 magnesium alloys[J].Special Casting and Nonferrous Alloys,2006,26(11):736-738.
    [13]COR E.Standard practice for laboratory immersion corrosion testing of metals 1[J].Corrosion,2004,72:1-8.
    [14]CHEN L,WU Z,XIAO D H,GENG Z W,ZHOU P F.Effects of copper on the microstructure and properties of Mg-17Al-3Zn alloys[J].Materials&Corrosion,2015,66(10):1159-1168.
    [15]ABHIJEET S B,BALASUBRAMANIAM R,GUPTA M.Corrosion behaviour of Mg-Cu and Mg-Mo composites in 3.5%NaCl[J].Corrosion Science,2008,50(9):2423-2428.
    [16]周占霞,夏景攀.Cu对AM60B镁合金组织与腐蚀性能的影响[J].时代农机,2014(1):79-80.ZHOU Zhan-chao,XIA Jing-pan.Effect of Cu on microstructure and corrosion property of AM60B magnesium alloys[J].Era of Agricultural Machinery,2014(1):79-80.
    [17]MATHIEU S,RAPIN C,HAZAN J,STEINMETZ P.Corrosion behavior of high pressure die-cast and semi-solid cast AZ91Dalloys[J].Corrosion Science,2002,44(12):2737-2756.
    [18]XIAO D H,GENG Z W,CHEN L,WU Z,DIAO H Y,SONGM,ZHOU P F.Effects of alloying elements on microstructure and properties of magnesium alloys for tripling ball[J].Metallurgical and Materials Transactions A,2015,46(10):4793-803.
    [19]SHI Zhi-ming,ATRENS A.An innovative specimen configuration for the study of Mg corrosion[J].Corrosion Science,2011,53(1):226-246.
    [20]SONG G.Recent progress in corrosion and protection of magnesium alloys[J].Advanced Engineering Materials,2010,7(7):563-586.
    [21]PARDO A,MERINO M C,COY A E,ARRABA R,VIEJO F,MATYKINA E.Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.%NaCl[J].Corrosion Science,2008(50):823-834.
    [22]ZHANG Xin,LI Yong-jun,ZHANG Kui,WANG Chang-shun,LI Hong-wei,MA Ming-long,ZHANG Bao-dong.Corrosion and electrochemical behavior of Mg-Y alloys in 3.5%NaCl solution[J].Science Direct,2013,23:1226-1236.
    [23]CAO Fu-yong,SHI Zhi-ming,HOFSTETTER J,UGGOWITZER P J,SONG Guang-ling,LIU Ming,ATRENS A.Corrosion of ultra-high-purity Mg in 3.5%NaCl solution saturated with Mg(OH)2[J].Corrosion Science,2013,75(7):78-99.
    [24]CHANG J W,PENG L M,GUO X W,ATRENS A,GUO X W,FU P H,DING W J,WANG X S.Comparison of the corrosion behaviour in 5%NaCl solution of Mg alloys NZ30K and AZ91D[J].Journal of Applied Electrochemistry,2008,38(2):207-214.
    [25]孙擎擎,董朋轩,孙睿吉,陈启元,陈康华.时效制度对挤压Al-6.2Zn-2.3Mg-2.3Cu铝合金电化学腐蚀性能的影响[J].中国有色金属学报,2015,25(4):866-874.SUN Qing-qing,DONG Peng-xuan,SUN Rui-ji,CHEN Qi-yuan,CHEN Kang-hua.Effect of ageing process on electrochemical corrosion property of extruded A1-6.2Zn-2.3Mg-2.3Cu aluminium alloy[J].The Chinese Journal of Nonferrous Metals,2015,25(4):866-874.
    [26]SONG G,ATRENS A.Understanding magnesium corrosion—A framework for improved alloy performance[J].Advanced Engineering Materials,2003,5(12):837-858.
    [27]陈康华,陈送义,彭国胜,方华婵,肖代红.变形程度对7150铝合金再结晶及性能的影响[J].特种铸造及有色合金,2010,30(2):103-107.CHEN Kang-hua,CHEN Song-yi,PENG Guo-sheng,FANGHua-chan,XIAO Dai-hong.Effect of deformation degree on recrystallization and properties of 7150 aluminum alloy[J].Special Casting and Nonferrous Alloys,2010,30(2):103-107.
    [28]彭国胜.变形和热处理对Al-Zn-Mg-Cu系超强铝合金组织和性能的影响[D].长沙:中南大学,2011:30-37.PENG Guo-sheng.Effect of deformation and annealing on microstructure and properties of Al-Zn-Mg-Cu aluminum alloys[D].Changsha:Central South University,2011:30-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700