用户名: 密码: 验证码:
大气压下氩原子谱线辐射诊断试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Research on Argon Atomic Emission Spectroscopy at Amospheric Pressure Condition
  • 作者:张维 ; 陈雷 ; 宋鹏 ; 曾文 ; 刘宇 ; 封超 ; 杨聪
  • 英文作者:ZHANG Wei;CHEN Lei;SONG Peng;ZENG Wen;LIU Yu;FENG Chao;YANG Cong;Aerospace Engineering Institute,Shenyang Aerospace University;College of Electromechanical & Information Engineering,Dalian Minzu University;
  • 关键词:大气压 ; 介质阻挡放电 ; 低温等离子体 ; 电子激励温度 ; 电子密度
  • 英文关键词:Atmosphericpressure;;DBD;;Low temperature plasma;;Excited electron temperature;;Electron density
  • 中文刊名:GUAN
  • 英文刊名:Spectroscopy and Spectral Analysis
  • 机构:沈阳航空航天大学航空航天工程学院;大连民族大学机电信息工程学院;
  • 出版日期:2018-12-15
  • 出版单位:光谱学与光谱分析
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金项目(51409158,51509035)资助
  • 语种:中文;
  • 页:GUAN201812006
  • 页数:5
  • CN:12
  • ISSN:11-2200/O4
  • 分类号:32-36
摘要
大气压下介质阻挡放电应用领域具有多范畴、深广度、常态化等优势,针对同轴电极放电试验进行了系列参数诊断。采用自主研发的介质阻挡放电助燃激励器,在一个标准大气压、放电频率11. 4 k Hz、放电峰值电压5. 4~13. 4 kV(间隔1. 0 kV)条件下进行了氩气电离试验。采用原子发射光谱法(AES)对氩等离子体谱线的激发、分光进行了检测分析;选用二谱线法及Boltzmann法测试了电子激励温度;根据Stark展宽效应计算了电子密度;获得了电子激励温度及电子密度随放电峰值电压增长的变化规律。结果表明,在试验电压条件下电子激励温度并不随外加电压的升高而递增,这表明通道内微放电的主要特征并不依赖于外部电压的供给,而是取决于气体组份、气体压强和放电模型,增大外加放电电压仅增加单位时间内微放电的数量,经整合电子激励温度可达3 500 K符合典型的低温等离子体特征;电子密度随外加电压的增长而趋于准线性趋势,电子密度数量级可达到108~109cm~(-3),电离度偏弱。这些参数的探索对等离子体研讨有重大意义。
        Dielectric barrier discharge( DBD) at atmospheric pressure has many advantages such as multi-category,depth and breadth,normality,etc. In this paper,a series of parameter diagnoses for the coaxial electrode discharge test were carried out. Argon ionization experiments were carried out under the conditions of 11. 4 k Hz discharge frequency and 5. 4 ~ 13. 4 kV( interval 1 kV) discharge peak voltage by using self-developed DBD combustion actuator at standard atmospheric pressure. Atomic emission spectrometry( AES) was employed to test and analyze argon plasma excitation and spectroscopy; two-line method and Boltzmannmethod were employed to test electron excitation temperature; electronic density was calculated according to Stark broaden law; the variations in electron excitation temperature and electron density with the increase of the peak discharge voltage were obtained. The results showed that the electron excitation temperature does not monotonically increase with the increase of applied voltage,which indicates the main characteristics of the micro-discharge are not dependent on the external voltage strength,but on the gas composition,gas pressure and discharge model; Increasing discharge power could only increase micro-discharge number; the maximum electron excitation temperature is up to 3 500 K; the electron density which achieves 108~ 109 cm3 tends to be a quasi linear trend with the increase of applied voltage. The degree of ionization is weak. The exploration of these parameters is of great significance to the study of plasma.
引文
[1] HOU Shi-ying,ZENG Peng,SUN Tao,et al(侯世英,曾鹏,孙韬,等). High Voltage Engineering(高电压技术),2014,40(1):187.
    [2] Shang K,Li J,Lu N,et al. Ozone:Science&Engineering,2015,37(2):178.
    [3] An J,Shang K,Lu N,et al. Journal of Hazardous Materials,2014,268:237.
    [4] Mastanaiah N,Banerjee P,Johnson J A,et al. Plasma Processes and Polymers,2013,10(12):1120.
    [5] WANG Rui,LIU Zhan-he,WU Zhe,et al(王瑞,刘战合,武哲,等). Journal of Shenyang Aerospece University(沈阳航空航天大学学报),2011,28(3):2095.
    [6] SONG Zhen-xing,HE Li-ming,ZHANG Peng,et al(宋振兴,何立明,张鹏,等). High Voltage Engineering(高压电技术),2012,38(7):1758.
    [7] Kim Woodyung,Mungal M G,Cappel M A. Combustion and Flame,2010,157:374.
    [8] GAO Ye-nan,DONG Li-fang,LIU Ying(高烨楠,董丽芳,刘莹). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2015,35(10):2708.
    [9] Lu X,Han D,Huang Z. Progress in Energy and Combustion Science,2011,37(6):741.
    [10] Lin K M,Hu M H,Hung C T,et al. Computer Physics Communications,2012,183(12):2550.
    [11] Nagaraja S,Yang V,Adamovich I. Journal of Physics D:Applied Physics,2013,46(15):155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700