用户名: 密码: 验证码:
防热瓦式防护系统缝隙热控设计规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermal Control Designing Rules of Gaps for Tile Thermal Protection System
  • 作者:黄杰 ; 姚卫星 ; 孔斌 ; 王曼 ; 甘建 ; 杨家勇
  • 英文作者:HUANG Jie;YAO Weixing;KONG Bin;WANG Man;GAN Jian;YANG Jiayong;Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle,Nanjing University of Aeronautics & Astronautics;State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics & Astronautics;AVIC Chengdu Aircraft Design and Research Institute;
  • 关键词:热防护系统 ; 缝隙热流分布 ; 热控分析 ; 缝隙热短路 ; 缝隙几何形状
  • 英文关键词:thermal protection system;;heat flux of gap;;heat control analysis;;short circuit of the gap;;geometrical shape of gap
  • 中文刊名:NJHK
  • 英文刊名:Journal of Nanjing University of Aeronautics & Astronautics
  • 机构:南京航空航天大学飞行器先进设计技术国防重点学科实验室;南京航空航天大学机械结构力学及控制国家重点实验室;中国航空工业集团公司成都飞机设计研究所;
  • 出版日期:2019-06-15
  • 出版单位:南京航空航天大学学报
  • 年:2019
  • 期:v.51;No.248
  • 基金:江苏高校优势学科建设工程资助项目;; 博士后创新人才支持计划资助项目
  • 语种:中文;
  • 页:NJHK201903014
  • 页数:8
  • CN:03
  • ISSN:32-1429/V
  • 分类号:108-115
摘要
建立了热防护系统(Thermal protection system,TPS)缝隙气动热分析的计算流体动力学(Computational fluid dynamics,CFD)数值模型,将缝隙热流密度分布情况与平板热流进行了对比,结果表明由于缝隙的存在缝隙上端出现了热流峰值,并且缝隙迎风面热流密度大于背风面热流密度,缝隙热流密度主要集中在缝隙上端与缝隙宽度相当的区域内;采用分析获得的缝隙热流密度建立了缝隙热控分析的有限元传热模型,结果表明缝隙气动热和缝隙类空腔辐射会造成机体表面温度的升高,是造成缝隙热短路现象的原因;最后研究了缝隙几何形状(缝隙宽度、缝隙倒圆角以及缝隙台阶)对缝隙热控性能的影响,分析结果表明随缝隙宽度增加,机体表面最高温度升高。随缝隙倒圆角半径增加,机体表面最高温度降低。随缝隙台阶高度增加,台阶正差时机体表面最高温度升高,台阶逆差时机体表面最高温度降低。
        The computational fluid dynamics(CFD)numerical model is established to analyze the aerodynamic heating of gap for thermal protection system. The heat flux distribution of gap is compared with that of plate.Maximum heat flux appear at the upper of gap,and the heat flux on windward side is greater than that on leeward side. The heat flux is concentrated in upper gap that is approximately equal to the width of gap. The FEM heat transfer model for heat control analysis of gap is established based on the heat flux of gap. The aerodynamic heating and cavity radiation of gap result in the increase of temperature of structure,which is the reason of the short circuit phenomenon of gap. Finally,the influences of gap shape on the heat control performance are studied. As the width of gap increases,maximum temperature of structure increases. As the radius of rounded corner increases,maximum temperature of structure decreases. As the height of gap step increases,maximum temperature of structure increases,when the height of windward side is greater than that of leeward side. However maximum temperature of structure decreases when the height of windward side is less than that of leeward side.
引文
[1]沈遐龄.航天飞机气动加热计算[J].北京航空航天大学学报,1998,24(2):189-192.SHEN Xialing.Calculating method of aerodynamic heating for space shuttle[J].Journal of Beijing University of Aeronautics and Astronautics,1998,24(2):189-192.
    [2]夏刚,刘新建,程文科,等.钝体高超声速气动加热与结构热传递耦合的数值计算[J].国防科技大学学报,2003,25(1):35-39.XIA Gang,LIU Xinjian,CHENG Wenke,et al.Numerical simulation of coupled aeroheating and solid heat penetration for a hypersonic blunt body[J].Journal of National University of Defense Technology,2003,25(1):35-39.
    [3]国义军,代光月,杜业伟,等.再入飞行器非平衡气动加热工程计算方法研究[J].空气动力学学报,2015,33(5):581-587.GUO Yijun,DAI Guangyue,DU Yewei,et al.Engineering calculation of non-equilibrium effects on thermal environment of reentry vehicles[J].Acta Aerodynamica Sinica,2015,33(5):581-587.
    [4]杨亚政,杨嘉陵,方岱宁.高超声速飞行器热防护材料与结构的研究进展[J].应用数学与力学,2009,29(1):47-56.YANG Yazheng,YANG Jialing,FANG Daining.Research progress on the thermal protection materials and structures in hypersonic vehicles[J].Applied Mathematics and Mechanics,2009,29(1):47-56.
    [5]马忠辉,孙秦,王小军,等.热防护系统多层隔热结构传热分析及性能研究[J].宇航学报,2003,24(5):543-546.MA Zhonghui,SUN Qin,WANG Xiaojun,et al.TPS multi-layer insulation thermal analysis and performance study[J].Journal of Astronautics,2003,24(5):543-546.
    [6]秦强,成竹,任青梅,等.温度对刚性陶瓷防热瓦隔热性能的影响[J].导弹与航天运载技术,2010(4):58-61.QIN Qiang,CHENG Zhu,REN Qingmei,et al.Correlation between temperatures of rigid ceramic tile and its adiabatic property[J].Missiles and Space Vehicles,2010(4):58-61.
    [7]CHAPMAN D R.A theoretical analysis of heat transfer in regions of separated flow:NACA TN 3792[R].Washington:AMES Aeronautical Laboratory,1956.
    [8]AVERY D E.Aerodynamic heating in gaps of thermal protection system tile arrays in laminar and turbulent boundary layers:NASA TP 1187[R].Hampton Virginia:Langley Research Center,1978:1-46.
    [9]SCOTT C D,MARAIA R J.Gap heating with pressure gradients:AIAA-79-1043[R].Houston Texas:NASA Johnson Space Center,1979:1-8.
    [10]童秉纲.航天飞机防热瓦缝隙气动加热的讨论[J].气动实验与测量控制,1990,4(4):1-8.TONG Binggang.A qualitative study of title gap heating on space shuttle[J].Aerodynamic Experiment and Measurement&Control,1990,4(4):1-8.
    [11]唐贵明.狭窄缝隙内的热流分布实验研究[J].流体力学实验与测量,2000,3(4):1-6.TANG Guiming.Experimental investigation of heat transfer distributions in deep gap[J].Experiments and Measurements in Fluid Mechanics,2000,3(4):1-6.
    [12]LIOU M S.A sequel to AUSM:AUSM+[J].Journal of Computational Physics,1996,129(2):364-382.
    [13]LEER B V.Towards the ultimate conservative difference scheme V:A second-order sequel to Godunov’s method[J].Journal of Computational Physics,1979,32(1):101-136.
    [14]MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAAJournal,1994,32(8):1598-1605.
    [15]YOON S,JAMESON A.Low-upper Gauss-Sediel method for the Euler and Navier-Stokes equations[J].AIAA Journal,1988,26(9):1025-1026.
    [16]ZHAO Y.Computation of complex turbulent flow using matrix-free implicit dual time-stepping scheme and LRN turbulence model on unstructured grids[J].Computers&Fluids,2004,33(1):119-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700