用户名: 密码: 验证码:
煤源灰分对煤基SiC纳米结构及堆积缺陷的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Coal Source Ash on Nanostructure and Stacking Faults Density for the Coal Based SiC
  • 作者:詹海鹃 ; 王康 ; 吴之强 ; 张娜 ; 吴丹 ; 刘万毅
  • 英文作者:ZHAN Hai-juan;WANG Kang;WU Zhi-qiang;ZHANG Na;WU Dan;LIU Wan-yi;State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering,College of Chemistry and Chemical Engineering,Ningxia University;
  • 关键词:碳化硅 ; 灰分 ; 溶胶凝胶法 ; 堆积缺陷 ; 纳米结构
  • 英文关键词:silicon carbide;;ash content;;sol-gel method;;stacking defect;;nanostructure
  • 中文刊名:RGJT
  • 英文刊名:Journal of Synthetic Crystals
  • 机构:宁夏大学化学化工学院省部共建煤炭高效利用与绿色化工国家重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:人工晶体学报
  • 年:2019
  • 期:v.48;No.246
  • 基金:宁夏高等学校科学研究项目(NGY2017008);; 宁夏回族自治区国内一流学科建设项目(NXYLXK2017A04);; 宁夏青年人才托举工程项目;; 国家自然科学基金(51364038)
  • 语种:中文;
  • 页:RGJT201904022
  • 页数:7
  • CN:04
  • ISSN:11-2637/O7
  • 分类号:132-137+143
摘要
以电锻太西煤和未电锻太西煤为原料,采用溶胶凝胶法制备纳米级煤质碳化硅材料,并对其结构进行XRD,TEM,XPS表征及计算分析。研究发现,以高灰分的未脱灰电锻太西煤碳源所制备的SiC材料中,其堆积缺陷变化较大,且随着催化剂用量的增加其微观形貌呈现棒状、线状及颗粒状;而当催化剂用量一定时,以低灰分的脱灰电锻太西煤为原料所获得的SiC材料结构中堆积缺陷密度随其原料灰分的升高而下降,当灰分为4. 43%时,碳化硅堆积缺陷变化不明显,且其微观形貌保持均一。碳源灰分与催化剂在一定范围内,对于调控纳米碳化硅的形貌、比表面积等具有一定协调催化作用,可以通过催化剂及灰分调控以控制获得不同纳米形态的碳化硅材料。
        Nano-scale coal-based silicon carbide materials were prepared by electro-forging Taixi coal and non-electric forging Taixi coal,and the structure was characterized by XRD,TEM,XPS and calculation.The results show that the SiC materials prepared by high-ash unashed electric forging Taixi coal carbon source have large variation of stacking defects,and their morphology is rod-shaped,linear and granular with increasing catalyst dosage. When the amount of catalyst is constant,the bulk defect density of SiC material structure obtained by low-ash de-ashing electric forging Taixi coal as raw material decreases with the increase of raw material ash; when ash is 4. 43%,silicon carbide accumulation defect the change is not obvious and its microscopic morphology remains uniform. The ash and catalyst of the carbon source have a certain coordination effect on the morphology and specific surface area of the nano-SiC,and the silicon carbide materials with different nano-morphologies can be controlled by catalyst and ash.
引文
[1]Laadoua H,Lucas R,Champavier Y,et al.Processing of in situ synthesized polycarbosilane-derived porous SiC using kraft pulp fibers[J].Materials Letters,2017,191:46-49.
    [2]赵春荣,杨娟玉,卢世刚.一维SiC纳米材料制备技术研究进展[J].稀有金属,2014,38(2):320-320.
    [3]刘霞,李洪,高鑫,等.泡沫碳化硅陶瓷材料的研究进展[J].化工进展,2012,31(11):2520-2525.
    [4]Gianchandani P K,Casalegno V,Salvo M,et al.SiC foam sandwich structures obtained by Mo-wrap joining[J].Materials Letters,2018,221:240-243.
    [5]吴旭峰,凌一鸣.电弧放电制备碳化硅纳米棒[J].硅酸盐学报,2006,34(10):1283-1286.
    [6]Shi Y F,Meng Y,Chen D H,et al.Highly ordered mesoporous silicon carbide ceramics with large surface areas and high stability[J].Advanced Functional Materials,2006,16(4):561-567.
    [7]Wu R,Zhou K,Yang Z,et al.Molten-salt-mediated synthesis of Si C nanowires for microwave absorption application[J].Cryst.Eng.Comm.,2013,15(3):570-576.
    [8]Xiao J,Li F,Zhong Q,et al.Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC[J].Hydrometallurgy,2015,155:118-124.
    [9]Safi S,Rad R Y.In situ synthesis of nano size silicon carbide and fabrication of C-SiC composites during the siliconization process of mesocarbon microbeads preforms[J].Ceramics International,2012,38(6):5081-5087.
    [10]Seo W S,Koumoto K.Stacking faults inβ-SiC formed during carbothermal reduction of SiO2[J].Journal of the American Ceramic Society,1996,79(7):1777-1782.
    [11]Nyathi M S,Burgess Clifford C,Schobert H H.Effect of petroleum feedstock and reaction conditions on the structure of Coal-petroleum Co-cokes and Heat-treated products[J].Energy Fuel,2012,26(7):4413-4419.
    [12]Ahmed Y M Z,El-Sheikh S M.Influence of the pH on the morphology of sol-gel derived nanostructured SiC[J].Journal of the American Ceramic Society,2009,92(11):2724-2730.
    [13]Zhang Y F,Tang Y H,Wang N,et al.Silicon nanowires prepared by laser ablation at high temperature[J].Applied physics letters,1998,72(15):1835-1837.
    [14]Duan X,Lieber C M.General synthesis of compound semiconductor nanowires[J].Advanced Materials,2000,12(4):298-302.
    [15]Chiu S C,Lin W H,Wu H C,et al.Silicon carbide nanowire as nanoemitter and greenish-blue nanophosphor for field emission applications[J].Nanoscience and Nanotechnology Letters,2012,4(1):72-76.
    [16]Milewski J V,Gac F D,Petrovic J J,et al.Growth of beta-silicon carbide whiskers by the VLS process[J].Journal of materials Science,1985,20(4):1160-1166.
    [17]Liu Z,Ci L,Jin-Phillipp N Y,et al.Vapor-solid reaction for silicon carbide hollow spherical nanocrystals[J].The Journal of Physical Chemistry C,2007,111(34):12517-12521.
    [18]Cao G.Synthesis,Properties and Applications[M].London:Imperial college press,2004.
    [19]Frank F C.The influence of dislocations on crystal growth[J].Discussions of the Faraday Society,1949,5:48-54.
    [20]Blakely J M,Jackson K A.Growth of crystal whiskers[J].The Journal of Chemical Physics,1962,37(2):428-430.
    [21]Seo W S,Koumoto K,Aria S.Morphology and stacking Faults ofβ-silicon carbide whisker synthesized by arbothermal reduction[J].Journal of the American Ceramic Society,2000,83(10):2584-2592.
    [22]Martin H P,Ecke R,Müller E.Synthesis of nanocrystalline silicon carbide powder by carbothermal reduction[J].Journal of the European Ceramic Society,1998,18(12):1737-1742.
    [23]Morales A M,Lieber C M.A laser ablation method for the synthesis of crystalline semiconductor nanowires[J].Science,1998,279(5348):208-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700