用户名: 密码: 验证码:
铝合金砂型低压铸造界面传热系数的测定
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Determination of Interfacial Heat Transfer Coefficient during the Low Pressure Sand Casting Process of Aluminum Alloy
  • 作者:汪壮显 ; 洪润洲 ; 熊艳才 ; 杨守杰 ; 左强
  • 英文作者:Wang Zhuangxian;Hong Runzhou;Xiong Yancai;Yang Shoujie;Zuo Qiang;Beijing Advanced Engineering Technology and Application Research Center of Aluminum Materials,Beijing Institute of Aeronautical Materials;
  • 关键词:界面传热系数 ; 砂型低压铸造 ; 反算法
  • 英文关键词:Interfacial Heat Transfer Coefficient;;Low Pressure Sand Casting;;Inverse Estimation Method
  • 中文刊名:TZZZ
  • 英文刊名:Special Casting & Nonferrous Alloys
  • 机构:中国航发北京航空材料研究院,北京市先进铝合金材料及应用工程技术研究中心;
  • 出版日期:2018-12-20
  • 出版单位:特种铸造及有色合金
  • 年:2018
  • 期:v.38;No.309
  • 语种:中文;
  • 页:TZZZ201812015
  • 页数:5
  • CN:12
  • ISSN:42-1148/TG
  • 分类号:50-54
摘要
以典型板形试样的砂型低压铸造为基础,采用热传导反算法对ZL114A铝合金/树脂砂的界面传热系数进行了反求,并对界面传热系数随温度的变化关系进行了分析。结果表明,界面传热系数在液相线温度以上时基本保持恒定,约为335W獉m~(-2)獉K~(-1);当温度下降到530~573℃之间时,界面传热系数迅速下降;当温度下降到530℃之后,界面传热系数缓慢下降,最后逐渐稳定在60W獉m~(-2)獉K~(-1)左右。通过对反求得到的界面传热系数进行非线性拟合,得出了该工艺条件下界面传热系数随界面温度变化的经验公式。最后将反求得到的界面传热系数应用到ProCAST软件中对铸件的温度场进行仿真计算,计算结果表明,模拟温度与实测温度具有较好的一致性,最大温度偏差约为12℃。
        Interfacial heat transfer coefficient(IHTC)between ZL114Aaluminum alloy and resin sand was obtained by a inverse heat conduction problem(IHCP)method during the low pressure sand casting process of a typical plate shape casting,and the relationship between IHTC and temperature was analyzed.The results indicate that IHTC remains at an approximately constant of 335W·m~(-2)K~(-1 )when temperature is above liquidus value.Then the IHTC is decreased rapidly as the temperature is inclined to530~570℃.Finally,when the temperature is less than 530℃,the IHTC is decreased gradually to an approximately value of 60W·m~(-2)K~(-1).The empirical equation of IHTC as a function of temperature was established by non-linear fiting.The reversely calculated IHTC was applied to the temperature calculation of the casting with ProCAST software.The results reveal that the calculated temperature agrees well with the experimental temperature with the maximum deviation less than 12℃.
引文
[1]周建新.铸造计算机模拟仿真技术现状及发展趋势[J].铸造,2012,61(10):1 105-1 115.
    [2]张国俊,孙志平,邹丽艳.铸造过程数值模拟的应用与展望[J].热加工工艺,2010,39(21):61-64.
    [3]ZHANG W,XIE G,ZHANG D.Application of an optimization method and experiment in inverse determination of interfacial heat transfer coefficients in the blade casting process[J].Experimental Thermal&Fluid Science,2010,34(8):1 068-1 076.
    [4]BAZHENOV V E,KOLTYGIN A V,TSELOVALNIK Y V.Determination of the heat-transfer coefficient between the AK7ch(A356)alloy casting and no-bake mold[J].Russian Journal of NonFerrous Metals,2016,57(7):686-694.
    [5]薛祥,周彼德,蔺克亮.铸铝ZL101与树脂砂型之间等效传热系数的数值模拟[J].材料科学与工艺,2001,9(2):206-210.
    [6]KOVAˇCEVI L,TEREK P,KAKAD,et al.A correlation to describe interfacial heat transfer coefficient during solidification of Al-Si alloy casting[J].Journal of Materials Processing Technology,2012,212(9):1 856-1 861.
    [7]张立强,李落星,朱必武,等.基于反分析法的凝固过程中界面传热系数研究[J].湖南大学学报(自科版),2010,37(6):22-26.
    [8]郭志鹏,熊守美,尚铉,等.铝合金压铸过程铸件/铸型界面换热行为的研究Ⅰ实验研究和界面传热系数求解[J].金属学报,2007,43(11):1 149-1 154.
    [9]BECK J V.Nonlinear estimation applied to the nonlinear inverse heat conduction problem[J].International Journal of Heat&Mass Transfer,1970,13(4):703-716.
    [10]熊守美,许庆彦,康进武.铸造过程模拟仿真技术[M].北京:机械工业出版社,2004:357-359.
    [11]PRABHU K N,CAMPBELL J.Investigation of casting/chill interfacial heat transfer during solidification of Al-11Si alloy by inverse modelling and real-time X-ray imaging[J].Cast Metals,1999,12(3):137-143.
    [12]SUN H C,CHAO L S.Analysis of interfacial heat transfer coefficient of green sand mold casting for aluminum and tin-lead alloys by using a lump capacitance method[J].Journal of Heat Transfer,2007,129(4):595-600.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700