用户名: 密码: 验证码:
水基纳米流体传递性质的分子动力学模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Molecular Dynamics Simulation Research of Transport Properties of Water-based Nanofluids
  • 作者:王宝和 ; 程飞 ; 白麟 ; 王维
  • 英文作者:WANG Baohe;CHENG Fei;BAI Lin;WANG Wei;School of Chemical Engineering , Dalian University of Technology;School of Chemical Machinery and Safety , Dalian University of Technology;
  • 关键词:纳米流体 ; 纳米颗粒 ; 热导率 ; 黏度 ; 分子动力学模拟
  • 英文关键词:nanofluid;;nanoparticle;;thermal conductivity;;viscosity;;molecular dynamics simulation
  • 中文刊名:HNHU
  • 英文刊名:Henan Chemical Industry
  • 机构:大连理工大学化工学院;大连理工大学化工机械与安全学院;
  • 出版日期:2019-03-15
  • 出版单位:河南化工
  • 年:2019
  • 期:v.36;No.456
  • 基金:国家自然科学基金(21676042)
  • 语种:中文;
  • 页:HNHU201903006
  • 页数:5
  • CN:03
  • ISSN:41-1093/TQ
  • 分类号:22-26
摘要
采用平衡分子动力学方法,探讨了系统温度、纳米颗粒的体积分数及能量因子对水基纳米流体的热导率和黏度的影响。模拟结果表明,随着系统温度的升高,水基纳米流体的热导率增大,而黏度减小;水基纳米流体的热导率及黏度均随着纳米颗粒体积分数的增加而增大,当纳米颗粒的体积分数>2%时,水基纳米流体的热导率增幅较小;随着纳米颗粒能量因子的增加,水基纳米流体的热导率增大,而黏度基本不变。
        Using equilibrium molecular dynamics method,the effect of system temperate,volume fraction of nanoparticles and energy factor thermol conductivity and viscosity of water-based nanofluids are investigated.The simulation results indicates that the thermal conductivity of water-based nanofluids increase with the system temperature increasing,but the viscosity decrease with the system temperature increasing.The thermal conductivity and viscosity of water-based nanofluidsboth increase with the increasing of volume percentage of nanoparticles,when the volume percentage of nanoparticles is greater than 2%,the amplitude of increase of thermal conductivity is smaller.The thermal conductivity of water-based nanofluids increases with nanoparticle energy factor increasing,and the viscosity is basically unchanged.
引文
[1] JABBARI F,RAJABPOUR A,SAEDODINA S.Thermal conductivity and viscosity of nanofl uids:a review of recentmolecular dynamics studies[J].Chemical Engineering Science,2017,174:67-81.
    [2] CUI Wenzheng,BAI Minli,LV Jizu,et al.On the influencing factors and strengthening mechanism for thermal conductivity of nanofluids by molecular dynamics simulation[J].Industrial & Engineering Chemistry Research,2011,50:13568-13575.
    [3] 李英琪.纳米流体动态润湿行为主动调控的力学机理研究[D].合肥:中国科学技术大学,2017.
    [4] 崔文政.纳米流体强化动量与热量传递机理的分子动力学模拟研究[D].大连:大连理工大学,2012.
    [5] PLIMPTON S.Fast parallel algorithms for short-range molecular dynamics[J].J Comput Phys 1995,117:1-19.
    [6] 德意志联邦共和国工程师协会工艺与化学工程学会.传热手册[M].北京:化学工业出版,1983:143-210.
    [7] HEERMANN D W.Computer-simulation methods[M].Berlin:Springer Berlin Heidelberg,1990.
    [8] HOCKNEY R W,EASTWOOD J W.Computer simulation using particles[M].Boca Raton:CRC Press,1988.
    [9] LENNARD JONES J E,DEVONSHIRE A F.Critical phenomena ingases:I[J].Proceedings of the Royal Society of London,Series A:Mathematical and Physical Sciences,1937,163(912):53-70.
    [10] ADAMS P,HENDERSON J R.Molecular dynamics simulations of wetting and drying in LJ models of solid-fluid interfaces in the presence of liquid-vapour coexistence[J].Molecular Physics,1991,73(6):1383-1399.
    [11] ALLEN M P,TILDESLEY T D.Computer simulations of liquids[M].Oxford,UK:Clarendon Press,1987.
    [12] MCGARGHEY A J H,KAVIANY M.Phonon transport in molecular dynamics simulations:formulation and thermal conductivity prediction[J].Advances in Heat Transfer,2006,39(2):169-225.
    [13] XUE L,KEBLINSKI P,PHILLHOP S R,et al.Effect of liquid layering at the liquid-solid interface on thermal transport[J].International Journal of Heat and Mass Transfer,2004,47:4277-4284.
    [14] VEGELSANG R,HOHEISEL C,CICCOTTI G.Thermal conductivity of the Lennard-Jones liquid by molecular dynamics calculations[J].Journal of Chemical Physics,1987,86:6371-6375.
    [15] 凌志勇,邹涛,丁建宁,等.纳米流体黏度特性[J].化工学报,2012,63(5):1409-1414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700