用户名: 密码: 验证码:
地铁钢轨滚动接触疲劳损伤研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Rail Rolling Contact Fatigue of Subway
  • 作者:梁喜仁 ; 陶功权 ; 陆文教 ; 关庆华 ; 温泽峰
  • 英文作者:LIANG Xiren;TAO Gongquan;LU Wenjiao;GUAN Qinghua;WEN Zefeng;Traction Power State Key Laboratory, Southwest Jiaotong University;Guangzhou Metro;
  • 关键词:轮轨关系 ; 钢轨滚动接触疲劳 ; 疲劳指数 ; 损伤函数 ; 蠕滑力
  • 英文关键词:wheel-rail interaction;;rail rolling contact fatigue;;fatigue index;;damage function;;creep force
  • 中文刊名:JXXB
  • 英文刊名:Journal of Mechanical Engineering
  • 机构:西南交通大学牵引动力国家重点实验室;广州地铁集团有限公司;
  • 出版日期:2018-12-25 18:32
  • 出版单位:机械工程学报
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金(51675444);; 牵引动力国家重点实验室自主课题(2015TPL_T01)资助项目
  • 语种:中文;
  • 页:JXXB201902017
  • 页数:9
  • CN:02
  • ISSN:11-2187/TH
  • 分类号:161-169
摘要
钢轨滚动接触疲劳损伤在地铁线路上较为常见。建立包含地铁车辆系统动力学模型、基于安定图的疲劳指数和基于磨耗数的损伤函数为一体的钢轨滚动接触疲劳预测模型,分析车辆在通过三种典型曲线时钢轨的受力状态、接触点位置和损伤情况。研究结果表明,车辆通过曲线时低轨侧钢轨蠕滑力的合力指向直角坐标系的第四象限,接触点主要位于轨顶区域;高轨侧钢轨蠕滑力的合力主要指向直角坐标系的第三象限,接触点主要位于高轨内侧轨距角处。钢轨表面疲劳指数大于0的概率较大,材料易处于棘轮效应区,同时根据损伤函数得到钢轨的损伤值大于0,即属于疲劳裂纹损伤。容易导致钢轨表面在轮轨常接触区产生与蠕滑力合力方向相垂直的裂纹,其方向与现场观察到的裂纹方向相一致。随着曲线半径的减小,轮轨蠕滑力合力显著增大。磨耗后的车轮和磨耗后的钢轨在小半径曲线上频繁地相互作用,易使钢轨材料产生棘轮效应,是导致钢轨表面产生裂纹和剥离掉块的主要原因。
        Rail rolling contact fatigue(RCF) is a common problem in subway lines. In this paper a RCF prediction model isestablished, including vehicle system dynamics model, fatigue index based on the shakedown map and rail damage function based onthe wear number. The wheel/rail creep force, wheel/rail contact positions and rail RCF are analyzed when the vehicle operates onthree typical kinds of curved tracks. The results show that when the vehicle passes through the curved track, the resultant creep forceson the low rail point to the fourth quadrant of the Cartesian coordinates system, while on the high rail they mainly point to the thirdquadrant of the Cartesian coordinates system. The fatigue index of rail surface is larger than 0, which indicates that the material incontact region is in the ratcheting zone. The value of rail damage is larger than 0 according to the damage function, which means RCFcrack damage. The total creep force is easy to cause the crack of which the directions are approximately perpendicular to the creepforce on the rail surface, which is almost the same as the situation observed on field. With the curve radius decreasing, the total ofwheel/rail creep force increases significantly. The worn wheel and rail frequently interact in the small radius curves, which is the maincause of cracking and shelling on the rail surface.
引文
[1]金学松,沈志云.轮轨滚动接触疲劳问题研究的最新进展[J].铁道学报,2001,23(2):92-108.JIN Xuesong,SHEN Zhiyun.Rolling contact fatigue of wheel/rail and its advanced research progress[J].Journal of the China Railway Society,2001,23(2):92-108.
    [2]RINGSBERG J W.Rolling contact fatigue of railway rails with emphasis on crack initiation[D].Gteborg:Chalmers University of Technology,2000.
    [3]FRHLING R,SPANGENBERG U,HETTASCH G.Wheel/rail contact geometry assessment to limit rolling contact fatigue initiation at high axle loads[J].Vehicle System Dynamics,2012,50(Suppl.):319-334.
    [4]KALLE K.Influence of rail,wheel and track geometries on wheel and rail degradation[D].Gteborg:Chalmers University of Technology,2015.
    [5]PELIN B,ADAM B,ANDY V.Prediction of RCFdamage on underground metro lines[C/CD]//First International Conference on Rail Transportation,July10-12,2017,Chengdu.
    [6]MATSUDA H,SATOH Y,KANEMATSU Y,et al.On-site investigation and analysis of damage leading to rail break[J].Wear,2011,271(1):168-173.
    [7]ZHOU Yu,WANG Shaofeng,WANG Tianyi,et al.Field and laboratory investigation of the relationship between rail head check and wear in a heavy-haul railway[J].Wear,2014,315(1-2):68-77.
    [8]郭俊.轮轨滚动接触疲劳损伤机理研究[D].成都:西南交通大学,2006.GUO Jun.Study on mechanism of wheel/rail rolling contact fatigue and damage[D].Chengdu:Southwest Jiaotong University,2006.
    [9]卢观健,杨克.钢轨伤损的形貌特征及其失效机理[J].铁道学报,1996,18(3):120-124.LU Guanjian,YANG Ke.Morphology and failure mechanism of rail damage[J].Journal of the China Railway Society,1996,18(3):120-124.
    [10]刘学文,邹定强,邢丽贤,等.钢轨踏面斜裂纹伤损原因及对策的研究[J].中国铁道科学,2004,25(2):82-87.LU Xuewen,ZHOU Dingqiang,XING Lixian,et al.Study on the causes and Countermeasures of rail tread slanting crack[J].Journal of the China Railway Society,2004,25(2):82-87.
    [11]熊嘉阳.钢轨斜裂纹形成机理研究[D].成都:西南交通大学,2006.XIONG Jiayang.Study on the formative mechanism of rail oblique crack[D].Chengdu:Southwest Jiaotong University,2006.
    [12]金学松,刘启跃.轮轨摩擦学[M].北京:中国铁道出版社,2004.JIN Xuesong,LIU Qiyue.Tribology of wheel and rail[M].Beijing:China Railway Publishing House,2004.
    [13]BOWER A F,JOHNSON K L.Plastic flow and shakedown of rail surface in repeated wheel-rail contact[J].Wear,1991,144(1):1-18.
    [14]JOHNSON K L.The strength of surfaces in rolling contact[J].Proceedings of the Institution of Mechanical Engineers,1989,203(203):151-163.
    [15]EKBERG A,KABO E,ANDERSSON H.An engineering model for prediction of rolling contact fatigue of railway wheels[J].Fatigue and Fracture of Engineering Materials and Structures,2002,25(10):899-909.
    [16]JOHN T,JOHN S,JAVIER P.The development of a wheel and rolling contact fatigue model[R].RSSB Report for Task T549,2007.
    [17]FLECHER D J,HYDE P,KAPOOR A.Modelling and full-scale trials to investigate fluid pressurization of rolling contact fatigue cracks[J].Wear,2008,265(1):1317-1324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700