用户名: 密码: 验证码:
不同苎麻品种根际微生物多样性群落结构分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microbial Community Structures and Diversities in Different Ramie Varieties Rhizosphere Soils
  • 作者:苏小惠 ; 白玉超 ; 佘玮 ; 杨瑞芳 ; 崔丹丹 ; 李林林 ; 王继龙 ; 崔国贤
  • 英文作者:SU Xiaohui;BAI Yuchao;SHE Wei;YANG Ruifang;CUI Dandan;LI Linlin;WANG Jilong;CUI Guoxian;Ramie Research Institute of Hunan Agricultural University;Shenzhen Batian Ecotypic Engineering Co.,Ltd.;College of Agricultural,Hunan Agricultural University;
  • 关键词:苎麻 ; 根际土壤 ; 微生物多样性
  • 英文关键词:ramie;;rhizosphere soil;;microbial diversity
  • 中文刊名:ZGMZ
  • 英文刊名:Plant Fiber Sciences in China
  • 机构:湖南农业大学苎麻研究所;深圳市芭田生态工程股份有限公司;湖南农业大学农学院;
  • 出版日期:2019-06-10
  • 出版单位:中国麻业科学
  • 年:2019
  • 期:v.41;No.197
  • 基金:国家麻类产业技术体系(CARS-16-E11);; 苎麻BnPCS1调控镉胁迫应答基因的分子机制(31871673);; 麻类作物营养无损诊断新技术及精准施肥技术(2018YFD0201106);; 国家自然科学基金项目(31471543)
  • 语种:中文;
  • 页:ZGMZ201903004
  • 页数:8
  • CN:03
  • ISSN:43-1467/S
  • 分类号:21-28
摘要
根际微生物数量巨大且种类繁多,为了解苎麻根系微生物的群落结构特征,研究采用高通量测序方法,对不同品种5龄麻的根际土壤进行研究。结果表明:苎麻根际细菌群落归属于24门,52纲,125目,213科,329属,569种,其中变形菌门、酸杆菌门、绿弯菌门、拟杆菌门和放线菌门为优势门,约占细菌总数的88.92%~97.45%;真菌群落归属于43门,67纲,87目,102科,120属,174种,其中子囊菌门、接合菌门和担子菌门为优势门,约占真菌总数的65.59%~81.55%。研究初步探讨苎麻根际微生物多样性的特点,旨在为进一步探索根系分泌物介导下苎麻-土壤-微生物的互作关系提供理论依据。
        The number of rhizosphere microorganisms and species is huge.In order to understand the community structure characteristics of ramie root microorganisms,the high-throughput sequencing method was used to study the rhizosphere soil of different varieties of 5 th instar. The ramie rhizosphere bacteria belong to 24 phylum,52 classes,125 orders,213 families,329 genera and 569 species. The advantaged bacteria were Proteobacteria,Acidobacteria,Chloroflexi,Bacteroidetes and Actinobacteria,they accounted for 88.92% ~ 97.45% of total number of bacteria. The fungi belong to 43 phylum,67 classes,87 orders,102 families,120 genera sand 174 species. The advantaged fungi were Ascomycota,Zygomycota and Basidiomycota,they accounted for 65.59% ~ 81.55% of total number of fungi. The characteristics of rhizosphere microbial diversity in ramie were studied to provide some references for the research in ramie-soil-microbe interactions mediated by root exudates.
引文
[1]李宗道.麻作的理论与技术[M].上海:上海科学技术出版社,1980.
    [2]吴林坤,林向民,林文雄.根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J].植物生态学报,2014,38(3):298-310.
    [3]Nico E,Stefan S,Alexandre J,et al. Bacterial Diversity Stabilizes Community Productivity[J]. PLoS ONE,2012,7(3):e34517.
    [4]Berendsen R L,Pieterse C M,Bakker P A. The rhizosphere microbiome and plant health[J]. Trends in Plant Science,2012,17(8):478-486.
    [5]Gschwendtner S,Esperschütz J,Buegger F,et al. Effects of genetically modified starch metabolism in potato plants on photosynthate fluxes into the rhizosphere and on microbial degraders of root exudates[J]. FEMS Microbiology Ecology,2011,76(3):564-575.
    [6]Chaparro J M,Badri D V,Bakker M G,et al. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions[J]. PLoS ONE,2013,8:e55731.
    [7]崔翠.渭北黄土区农林复合系统核桃根际土壤及根系分泌物化感作用研究[D].杨凌:西北农林科技大学,2012.
    [8]Fan W,Tang Y,Qu Y,et al. Infant formula supplemented with low protein and high carbohydrate alters the intestinal microbiota in neonatal SD rats[J]. BMC Microbiology,2014,14(1):279.
    [9]Rousk J,Baath E,Brookes PC,et al. Soil bacterial and fungal communities across a p H gradient in an arable soil[J]. ISME Journal,2010,4(10):1340-1351.
    [10]Schloss PD,Gevers D,Westcott S L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies[J]. PLoS ONE,2011,6(12):e27310.
    [11]Quast C,Pruesse E,Yilmaz P,et al. The SILVA ribosomal RNA gene database project:improved data processing and web-based tools[J]. Nucleic Acids Research,2013,41(1):590-596.
    [12]Cole J R,Wang Q,Cardenas E,et al. The Ribosomal Database Project:improved alignments and new tools for rRNA analysis[J].Nucleic Acids Research,2009,37:141-145.
    [13]De Santis T Z,Hugenholtz P,Larsen N,et al. Greengenes,a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J]. Applied and Environmental Microbiology,2006,72(7):5069-5072.
    [14]Urmas Koljalg,Nilsson R H,Abarenkov K,et al. Towards a unified paradigm for sequence-based identification of fungi[J]. Molecular Ecology,2013,22(21):5271-5277.
    [15]赵帆,赵密珍,王钰,等.不同连作年限草莓根际细菌和真菌多样性变化[J].微生物学通报,2017,44(6):1377-1386.
    [16]Fierer N,Bradford M A,Jackson R B. Toward an ecological classification of soil bacteria[J]. Ecology,2007,88(6):1354-1364.
    [17]Peiffer J A,Spor A,Koren O,et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions[J]. Proceedings of the National Academy of Sciences,2013,110(16):6548-6553.
    [18]纳小凡,郑国琦,彭励,等.不同种植年限宁夏枸杞根际微生物多样性变化[J].土壤学报,2016,53(1):241-252.
    [19]Lynd L R,Weimer P J,Van Zyl W H,et al. Microbial cellulose utilization:Fundamentals and biotechnology[J]. Microbiology and Molecular Biology Reviews,2002,66(3):506-577.
    [20]Pankratov T A,Ivanova A O,Dedysh S N,et al. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat[J]. Environmental Microbiology,2011,13(7):1800-1814.
    [21]Lopez-Mondejar R,Voriskova J,Vetrovsky T,et al. The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics[J]. Soil Biology and Biochemistry,2015,87:43-50.
    [22]Yelle D J,Ralph J,Lu F C,et al. Evidence for cleavage of lignin by a brown rot basidiomycete[J]. Environmental Microbiology,2008,10(7):1844-1849.
    [23]Beimforde C,Feldberg K,Nylinder S,et al. Estimating the phanerozoic history of the ascomycota lineages:Combining fossil and molecular data[J]. Molecular Phylo-genetics and Evolution,2014,78:386-398.
    [24]赵帆,赵密珍,王钰,等.基于高通量测序研究草莓根际微生物群落结构和多样性[J].土壤,2019,51(1):51-60.
    [25]朱四元,汤清明,刘头明,等.不同苎麻品种根际微生物的变化及其对产量影响的初步研究[J].中国麻业科学,2010,32(4):193-197.
    [26]周建霞,朱四元,刘头明,等.不同苎麻品种间根际环境的初步研究[J].中国麻业科学,2011,33(4):206-209.
    [27]汤涤洛,涂修亮,付聪,等.基于高通量测序的苎麻根际土壤真菌群落结构[J].西南农业学报,2018,31(10):2160-2164.
    [28]李勇,黄小芳,丁万隆.根系分泌物及其对植物根际土壤微生态环境的影响[J].华北农学报,2008,23(增刊):182-186.
    [29]朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境,2003,12(1):102-105.
    [30]王延平,王华田.植物根分泌的化感物质及其在土壤中的环境行为[J].土壤通报,2010,41(2):501-507.
    [31]白玉超,杨瑞芳,刘楠楠,等.苎麻根际土壤浸提物的气相色谱-质谱(GC-MS)检测分析[J].中国麻业科学,2016,38(6):296-302.
    [32]白玉超.苎麻潜在的化感物质对苎麻根际微生物多样性及生理生化的影响[D].长沙:湖南农业大学,2017.
    [33]Murrag Art. Effect of simple phenolic compounds of heather(Lalluna vulgaris)on rumen microbial activity in vitro[J]. Journal of Chemical Ecology,1996,22(8):1493-1505.
    [34]Blum U,Shafer S R. Microbial population and phenoic acids in soil[J]. Soil Biology and Biochemistry,1988,20(6):793-800.
    [35]吴凤芝,王伟.大棚番茄土壤微生物区系研究[J].北方园艺,1999(3):1-2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700