用户名: 密码: 验证码:
3D打印制备碳纳米管/环氧树脂电磁屏蔽复合材料
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:3D-printed carbon nanotubes/epoxy composites for efficient electromagnetic interference shielding
  • 作者:王艳 ; 范泽文 ; 赵建 ; 贾利川 ; 徐玲 ; 鄢定祥 ; 王胜法
  • 英文作者:WANG Yan;FAN Zewen;ZHAO Jian;JIA Lichuan;XU Ling;YAN Dingxiang;WANG Shengfa;School of Textile and Material Engineering,Dalian Polytechnic University;State Key Laboratory of Polymer Materials Engineering,College of Polymer Science and Engineering,Sichuan University;International School of Information and Software Engineering,Dalian University of Technology;
  • 关键词:碳纳米管(CNTs) ; 通孔环氧树脂 ; 3D打印 ; 电磁屏蔽 ; 力学性能
  • 英文关键词:carbon nanotubes(CNTs);;porous epoxy resin;;3D-printing;;electromagnetic interference shielding;;mechanical properties
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:大连工业大学纺织与材料工程学院;四川大学高分子科学与工程学院高分子材料工程国家重点实验室;大连理工大学国际信息与软件学院;
  • 出版日期:2018-05-16 15:05
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(51503023;61772104);; 辽宁省教育厅高校科研基金(2016J022);; 辽宁省自然科学基金重点项目(20170520305);; 高分子材料工程国家重点实验室开放课题(sklpme2014-4-28)
  • 语种:中文;
  • 页:FUHE201901001
  • 页数:6
  • CN:01
  • ISSN:11-1801/TB
  • 分类号:7-12
摘要
采用3D打印技术制备具有连续通孔的环氧树脂基体,利用浸渍工艺将碳纳米管(CNTs)附着于环氧树脂基体孔壁,获得具有优异电性能和电磁屏蔽功能的CNTs/环氧树脂复合材料。研究结果表明,CNTs含量仅为2.86vol%时,CNTs/环氧树脂复合材料电导率高达35S/m,总电磁屏蔽效能高达39.2dB(厚度为2.0mm)。研究表明,CNTs/环氧树脂复合材料对进入其内部电磁波的吸收占总屏蔽效能的98%,表现出吸收屏蔽为主导的电磁屏蔽机制。CNTs/环氧树脂复合材料的弯曲强度和弯曲模量相比环氧树脂基体也有一定的提高。该研究为具有优异电磁屏蔽性能的高分子基复合材料制备提供了新思路和方法。
        The carbon nanotubes(CNTs)/epoxy composites were fabricated via 3D-printing technology and dip coating method.Superior shielding effectiveness of 39.2 dB and conductivity of 35 S/m(2 mm of sample thickness)were achieved with only 2.86 vol% CNTs loading in CNTs/epoxy composites.The absorption electromagnetic interference shielding effectiveness accounts for 98% of the total electromagnetic interference shielding effectiveness,confirming that absorption is the primary shielding mechanism rather than reflection in CNTs/epoxy composites,certifying the proposed model.It is worth noting that the flexural properties of CNTs/epoxy composites are better than those of the original 3D-printed epoxy.The research provides creative new ideas and methods for the preparation of polymer matrix composites with excellent electromagnetic shielding performance.
引文
[1]闫丽丽,乔妙杰,雷忆三,等.化学镀镍碳纤维/环氧树脂复合材料电磁屏蔽性能[J].复合材料学报,2013,30(2):44-49.YAN L L,QIAO M J,LEI Y S,et al.EMI shielding effectiveness of electroless nickel-plated carbon fibers/epoxy resin composites[J].Acta Materiae Compositae Sinica,2013,30(2):44-49(in Chinese).
    [2]袁冰清,郁黎明,盛雷梅,等.石墨烯/聚苯胺复合材料的电磁屏蔽性能[J].复合材料学报,2013,30(1):22-26.YUAN B Q,YU L M,SHENG L M,et al.Graphene sheets/polyaniline conposite for electromagnetic interference shielding[J].Acta Materiae Compositae Sinica,2013,30(1):22-26(in Chinese).
    [3] YAN D X,REN P G,PANG H,et al.Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite[J].Journal of Materials Chemistry,2012,22(36):18772-18774.
    [4] HSIAO S T,MA C C,LIAO W H,et al.Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance[J].ACS Applied Materials&Interfaces,2014,6(13):10667-10678.
    [5] GONG T,PENG S P,BAO R Y,et al.Low percolation threshold and balanced electrical and mechanical performances in polypropylene/carbon black composites with a continuous segregated structure[J].Composites Part B:Engineering,2016,99:348-357.
    [6] YAN D X,PANG H,LI B,et al.Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding[J].Advanced Functional Materials,2015,25(4):559-566.
    [7] LI J,ZHANG G,ZHANG H,et al.Electrical conductivity and electromagnetic interference shielding of epoxy nanocomposite foams containing functionalized multi-wall carbon nanotubes[J].Applied Surface Science,2018,428:7-16.
    [8] DING P,ZHUANG N,CUI X,et al.Enhanced thermal conductive property of polyamide composites by low mass fraction of covalently grafted graphene nanoribbons[J].Journal of Materials Chemistry C,2015,3(42):10990-10997.
    [9] ZENG X,YANG J,YUAN W.Preparation of a poly(methyl methacrylate)-reduced graphene oxide composite with enhanced properties by a solution blending method[J].European Polymer Journal,2012,48(10):1674-1682.
    [10] ZHANG H B,ZHENG W G,YAN Q,et al.The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites[J].Carbon,2012,50(14):5117-5125.
    [11] HSIAO S T,MA C C M,TIEN H W,et al.Using a noncovalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/waterborne polyurethane composite[J].Carbon,2013,60:57-66.
    [12] KYRYLYUK A V,HERMANT M C,SCHILLING T,et al.Controlling electrical percolation in multicomponent carbon nanotube dispersions[J].Nature Nanotechnology,2011,6:364-369.
    [13] PANG H,CHEN T,ZHANG G,et al.An electrically conducting polymer/graphene composite with a very low percolation threshold[J]. Materials Letters,2010,64(20):2226-2229.
    [14] YOONESSI M,GAIER J R.Highly conductive multifunctional graphene polycarbonate nanocomposites[J]. ACS Nano,2010,4(12):7211-7220.
    [15] ZHAN Y,LAVORGNA M,BUONOCORE G,et al.Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing[J].Journal of Materials Chemistry,2012,22(21):10464-10468.
    [16] GELVES G A,AL-SALEH M H,SUNDARARAJ U.Highly electrically conductive and high performance emi shielding nanowire/polymer nanocomposites by miscible mixing and precipitation[J].Journal of Materials Chemistry,2011,21(3):829-836.
    [17] YAN D X,PANG H,XU L,et al.Electromagnetic interference shielding of segregated polymer composite with an ultralow loading of in situ thermally reduced graphene oxide[J].Nanotechnology,2014,25(14):145705.
    [18] PANG H,YAN D X,BAO Y,et al.Super-tough conducting carbonnanotube/ultrahigh-molecular-weightpolyethylene composites with segregated and double-percolated structure[J].Journal of Materials Chemistry,2012,22(44):23568-23575.
    [19] EHUD K, DROR A. Enhancing aerospace engineering students’learning with 3Dprinting wind-tunnel models[J].Rapid Prototyping Journal,2011,17(5):393-402.
    [20] WANG X,JIANG M,ZHOU Z,et al.3Dprinting of polymer matrix composites:A review and prospective[J].Composites Part B:Engineering,2017,110:442-458.
    [21] CZY6)ZEWSKI J,BURZY′NSKI P,GAWEK,et al.Rapid prototyping of electrically conductive components using 3D printing technology[J].Journal of Materials Processing Technology,2009,209(12):5281-5285.
    [22] COMPTON B G,LEWIS J A.3D-printing of lightweight cellular composites[J].Advanced Materials,2014,26(34):5930-5935.
    [23]胡松青,吕强,王志坤,等.碳纳米管/聚合物复合材料界面结合性能的研究进展[J].复合材料学报,2017,34(1):12-22.HU S Q,LV Q,WANG Z K,et al.Advances in the interfacial bonding characteristics of carbon nanotube/polymer composites[J].Acta Materiae Compositae Sinica,2017,34(1):12-22(in Chinese).
    [24]郑国栋,张清杰,邓火英,等.不同官能化碳纳米管对MWCNTs-碳纤维/环氧树脂复合材料力学性能的影响[J].复合材料学报,2015,32(3):640-648.ZHENG G D,ZHANG Q J,DENG H Y,et al.Effect of different functionalized carbon nanotubes on mechanical properties of MWCNTs-carbon fiber/epoxy composites[J].Acta Materiae Compositae Sinica,2015,32(3):640-648(in Chinese).
    [25]周智伟,严勤华,刘长洪,等.超顺排碳纳米管/硅橡胶复合材料各向异性的电学性能和力学性能[J].复合材料学报,2017,34(7):1533-1539.ZHOU Z W,YAN Q H,LIU C H,et al.Anisotropic electrical and mechanical properties of the superaligned carbon nanotubes film/silicone composites[J].Acta Materiae Compositae Sinica,2017,34(7):1533-1539(in Chinese).
    [26] THOMASSIN J M,J R M E C,PARDOEN T,et al.Polymer/carbon based composites as electromagnetic interference(EMI)shielding materials[J].Materials Science and Engineering R:Reports,2013,74(7):211-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700