用户名: 密码: 验证码:
高心墙堆石坝填筑标准的试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental study on filling standard of high rockfill dams with soil core
  • 作者:朱晟 ; 钟春欣 ; 王京 ; 何顺宾
  • 英文作者:ZHU Sheng;ZHONG Chun-xin;WANG Jing;HE Shun-bin;State Key Laboratory of Hydrology-Water resources and Hydraulic Engineering, Hohai University;Hydroelectric College, Hohai University;China Power Construction Group Chengdu Survey and Design Institute Co., Ltd.;
  • 关键词:分形理论 ; 堆石坝 ; 填筑标准 ; 孔隙率 ; 相对密度 ; 变形协调
  • 英文关键词:fractal theory;;rockfill dam;;filling standard;;porosity rate;;relative density;;deformation coordination
  • 中文刊名:YTGC
  • 英文刊名:Chinese Journal of Geotechnical Engineering
  • 机构:河海大学水文水资源与水利水电工程科学国家重点实验室;河海大学水利水电学院;中国电建集团成都勘测设计研究院有限公司;
  • 出版日期:2018-11-15 15:43
  • 出版单位:岩土工程学报
  • 年:2019
  • 期:v.41;No.334
  • 基金:国家重点研发计划项目(2017YFC0404801)
  • 语种:中文;
  • 页:YTGC201903023
  • 页数:6
  • CN:03
  • ISSN:32-1124/TU
  • 分类号:163-168
摘要
近期建成的几座高心墙堆石坝的监测资料表明,坝体的分区变形协调性并没有达到设计目标。为此,结合建设中的长河坝300m级心墙堆石坝,开展了坝壳料的室内和现场大型相对密度试验,得到了相应的相对密度指标,并对各分区的填筑标准进行了讨论。结果表明:①由于级配为较好的分形分布、压实性优良,现场堆石区的填筑平均孔隙率达到19%,优于21%的设计指标,但相对密度仅为0.65;②根据规范要求设计的反滤2区、过渡区和堆石区的填筑相对密度在0.96~0.65之间,其压实程度存在明显差异,不易保证坝体各分区的变形协调;③采用与现场压实功能相匹配的室内相对密度试验技术,可解决高心墙坝的反滤料或面板坝的垫层料相对密度大于1的问题;④高坝堆石体的变形控制设计,需要考虑级配效应的影响,宜采用孔隙率和相对密度双控填筑指标。结论可为高堆石坝的设计与建设提供参考。
        The monitoring data of high ECRDs have shown that the deformation coordination in dam material zones does not meet the design goal, which is related to the degree of matching in the current specifications of filling for the filtration zone,transition zone and rockfill zone. Based on the fractal theory, the relative density tests on dam shell materials are carried out,and the relative density values are obtained. The filling criteria for the dam shell material zone are discussed. The results show that:(1) Due to its superior gradation and excellent compaction characteristics, the site average porosity rate of the rockfill is19% and is lower than the design value 21%, but its relative density is only 0.65.(2) The relative densities in the anti-filter zone No. 2, transition zone and rockfill zone are 0.96, 0.75 and 0.65, respectively, and their relative difference may be the main reason for the deformation coordination without achieving the design goal.(3) The compaction function matching technique of indoor and field relative density tests can solve the problem that the relative density of the cushion materials or the cushion materials of the face dam is greater than 1.0.(4) The deformation control of high rockfill dams needs to consider the effect of gradation. The filling design should adopt the double control indices of porosity rate and relative density. The conclusions may provide a reference for the design and construction of high rockfill dams.
引文
[1]马洪琪.中国坝工技术的发展与创新.水力发电学报[J].2014,33(6):1-10.(MA Hong-qi.Development and innovation of dam construction technology in China[J].Journal of Hydroelectric Engineering,2014,33(6):1-10.(in Chinese))
    [2]郦能惠.高混凝土面板堆石坝设计新理念[J].中国工程科学,2011,13(3):12-18.(LI Neng-hui.New concept of design for high concrete face rockfill dams[J].Engineering Sciences,2011,13(3):12-18.(in Chinese))
    [3]DLT 5395-2007碾压式土石坝设计规范[S].2007.(DLT5395-2007 Design code for roller compacted earth-rock dam[S].2007.(in Chinese))
    [4]DLT 5016-2011混凝土面板堆石坝设计规范[S].2011.(DLT 5016-2011 Design code for concrete face rockfill dams[S].2011.(in Chinese))
    [5]SOWERS GEORGE F,DAVIE J,MANSOER M N.Jatiluhur dam:problems and rehabilitation[J].Geotechnical Special Publication,1993,35:17-34.
    [6]UNAL B,EREN M,YALCIN M G.Investigation of eakage at Ataturk dam and hydroelectric power plant by means of hydrometric measurements[J].Engineering Geology,2007,93(1/2):45-63.
    [7]KALKAN Y,POTTS L V,BILGI S.Assessment of vertical deformation of the Atatürk dam using geodetic observations[J].Journal of Surveying Engineering,2016,142(2):1-14.
    [8]韩朝军,朱晟.土质防渗土石坝坝顶裂缝开裂机理与成因分析[J].中国农村水利水电,2013(8):116-120.(HANChao-jun,ZHU Sheng.Cracking mechanism and cause analysis of cracks in earth dam foundation[J].China Rural Water and Hydropower,2013(8):116-120.(in Chinese))
    [9]MARENGO H.Case study:dam safety during construction,lessons of the overtopping diversion works at Aguamilpa dam[J].Journal of Hydraulic Engineering,2006,132(11):1121-1127.
    [10]关志诚.紫坪铺高面板坝“5.12”震害修复处理[J].中国水利,2008,20:71-76.(GUAN Zhi-cheng.Repair of high face rock-fill dam after"May 12"Earthquake[J].China Water Resources,2008,20:71-76.(in Chinese))
    [11]邢林生,朱锦杰,赵晓宇.天生桥一级大坝面板挤压破损分析[J].水力发电学报.2008,27(5):59-63.(XINGLin-sheng,ZHU Jin-jie,ZHAO Xiao-yu.Analysis of squeezing damage of slabs on Tianshengqiao 1st stage dam[J].Journal of Hydroelectric Engineering,2008,27(5):59-63.(in Chinese))
    [12]中国电建昆明院糯扎渡安全监管中心.糯扎渡水电站心墙堆石坝安全监测报告[R].昆明:中国电建昆明院糯扎渡安全监管中心,2015.(Nuozhadu Safety Supervision Center of China Electric Construction Group Kunming Survey and Design Research Institute Co.,Ltd..Safety monitoring report of core wall rockfill dam of Nuozhadu Hydropower Station[R].Kunming:Nuozhadu Safety Supervision Center of China Electric Construction Group Kunming Survey and Design Research Institute Co.,Ltd..2015.(in Chinese))
    [13]雷红军,刘兴宁,冯业林.糯扎渡大坝坝料现场压实特性及心墙安全性研究[J].大坝与安全,2014(5):26-31.(LEIHong-jun,LIU Xing-ning,FENG Ye-lin.Research on field compaction characteristic of Nuozadu dam materials and safety of core wall[J].Dam and Safety,2014(5):26-31.(in Chinese))
    [14]四川大唐国际甘孜公司安全监测中心.长河坝水电站安全监测报告[R].成都:四川大唐国际甘孜公司安全监测中心,2016.(SiChuan Datang International Ganzi Company Safety Monitoring Center.Changheba hydropower station safety monitoring report[R].Chengdu:SiChuan Datang International Ganzi Company Safety Monitoring Center,2016.(in Chinese))
    [15]四川大唐国际甘孜公司中心实验室.长河坝水电站2015年度质量检测分析报告[R].成都:四川大唐国际甘孜公司中心实验室,2015.(SiChuan Datang Inter-national Ganzi Company Central Laboratory.2015 quality inspection analysis report[R].Chengdu:SiChuan Datang Inter-national Ganzi Company Central Laboratory,2015.(in Chinese))
    [16]NBT 35016-2013土石筑坝材料碾压试验规程[S].2013.(NBT 35016-2013 Earth and rock dam material rolling test procedure[S].2013.(in Chinese))
    [17]朱晟.粗粒筑坝材料现场压实质量的控制标准研究[J].水力发电,2011,37(12):22-26.(ZHU Sheng.Study on on-site compaction quality control standard of coarse-grained materials[J].Hydroelectric Power,2011,37(12):22-26.(in Chinese))
    [18]MARSAL R J.Large-scale of rockfill material[J].Journal of the Soil Mechanics and Foundation Division,ASCE,1967.93(2):27-43.
    [19]DLT 5356-2006水电水利工程粗粒土试验规程[S].2006.(DLT 5356-2006 Test code for coarse grained soil in hydropower and water conservancy projects[S].2006.(in Chinese))
    [20]朱晟.一种确定粗粒料室内缩尺试验相对密度制样标准的方法与试验装置[P].中国专利:ZL 20151067446.8,2017-09-29.(ZHU Sheng.Method and test device for determining relative density sample preparation standard for coarse-grained indoor scale test[P].China Patent:ZL20151067446.8,2017-09-29.(in Chinese))
    [21]朱晟,钟春欣,郑希镭,等.堆石体的填筑标准与级配优化研究[J].岩土工程学报,2018,40(1):108-115.(ZHUSheng,ZHONG Chun-xin,ZHENG Xi-lei,et al.Filling standards and gradation optimization of rockfill materials[J].Chinese Journal of Geotechnical Engineering,2018,40(1):108-115.(in Chinese))
    [22]ASTM-D4253-2016使用振动台测定土壤最大指数密度和单位重量的试验方法[S].2016.(ASTM-D4253-2016Standard test methods for maximum index density and unit weight of soils using a vibratory table[S].2016.(in Chinese))
    [23]朱晟,邓石德,宁志远.基于分形理论的堆石料级配设计方法[J].岩土工程学报,2017,39(6):1151-1155.(ZHUSheng,DENG Shi-de,NING Zhi-yuan,et al.Gradation design method of rockfill materials based on the fractal theory[J].Chinese Journal of Geotechnical Engineering,2017,39(6):1151-1155.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700