用户名: 密码: 验证码:
氧气底吹铜熔炼过程多相平衡模拟(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multiphase equilibrium modeling of oxygen bottom-blown copper smelting process
  • 作者:王亲猛 ; 郭学益 ; 王松松 ; 廖立乐 ; 田庆华
  • 英文作者:Qin-meng WANG;Xue-yi GUO;Song-song WANG;Li-le LIAO;Qing-hua TIAN;School of Minerals Processing and Bioengineering, Central South University;School of Metallurgy and Environment, Central South University;
  • 关键词:多相平衡模拟 ; 氧气底吹铜熔炼 ; SKS工艺 ; 元素分配
  • 英文关键词:multiphase equilibrium modeling;;oxygen bottom-blown copper smelting;;SKS process;;element distribution
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:中南大学资源加工与生物工程学院;中南大学冶金与环境学院;
  • 出版日期:2017-11-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2017
  • 期:v.27
  • 基金:Project(51620105013)supported by the National Natural Science Foundation of China
  • 语种:英文;
  • 页:ZYSY201711020
  • 页数:9
  • CN:11
  • ISSN:43-1239/TG
  • 分类号:193-201
摘要
基于氧气底吹工艺特性和最小吉布斯自由能原理,构建了氧气底吹铜熔炼热力学计算模型。模拟结果表明:在给定的稳定生产条件下,铜锍中Cu、Fe和S含量分别是71.08%、7.15%和17.51%,渣中Fe、SiO_2和Cu含量分别是42.17%、25.05%和3.16%。微量元素在底吹熔炼过程中气相、渣相和铜锍相三相间的模拟分配比例为:砷82.69%、11.22%和6.09%;锑16.57%、70.63%和12.80%;铋68.93%、11.30%和19.77%;铅19.70%、24.75%和55.55%;锌17.94%、64.28%和17.79%。将模拟结果和实际生产数据进行验证,结果一致,表明了该多相平衡热力学计算模型具有可靠性,可以指导氧气底吹铜熔炼生产实践,优化工艺操作参数。
        A computational thermodynamics model for the oxygen bottom-blown copper smelting process(Shuikoushan, SKS process) was established, based on the SKS smelting characteristics and theory of Gibbs free energy minimization. The calculated results of the model show that, under the given stable production condition, the contents of Cu, Fe and S in matte are 71.08%, 7.15% and 17.51%, and the contents of Fe, SiO_2 and Cu in slag are 42.17%, 25.05% and 3.16%. The calculated fractional distributions of minor elements among gas, slag and matte phases are As 82.69%,11.22%, 6.09%, Sb 16.57%, 70.63%, 12.80%, Bi 68.93%, 11.30%, 19.77%, Pb 19.70%, 24.75%, 55.55% and Zn 17.94%, 64.28%, 17.79%, respectively. The calculated results of the multiphase equilibrium model agree well with the actual industrial production data, indicating that the credibility of the model is validated. Therefore, the model could be used to monitor and optimize the industrial operations of SKS process.
引文
[1]CUI Zhi-xiang,YAN Hong-jie,SHEN Dian-bang,CUI Zhi-qiang,YU Peng-fei.The research of metallurgical reaction engineering in oxygen bottom blowing copper smelting[C]//Proceedings of 5th International Symposium on High-Temperature Metallurgical.Hoboken,NJ,USA:John Wiley&Sons,Inc.2014:547-554.
    [2]CUI Zhi-xiang,SHEN Dian-bang,WANG Zhi,LI Wei-qun,BIAN Rui-ming.The theory and practice of copper smelting with oxygen enriched bottom blowing[J].China Nonferrous Metallurgy,2010(6):21-26.(in Chinese)
    [3]ZHAO Bao-jun,CUI Zhi-xiang,WANG Zhi.A new copper smelting technology—Bottom blown oxygen furnace developed at Dongying Fangyuan nonferrous metals[C]//Processing of 4th International Symposium on High-Temperature Metallurgical.Hoboken,NJ,USA:John Wiley&Sons,Inc,2013:3-10.
    [4]GOTO S.Equilibrium calculations between matte,slag and gaseous phases in copper smelting[J].London:IMM,1975:23-34.
    [5]SHIMPO R,WATANABE Y,GOTO S,OGAWA O.An application of equilibrium calculations to the copper smelting operation[J].Advances in Sulfide Smelting,1983,1:295-316.
    [6]SHIMPO R,GOTO S,OGAWA O,ASAKURA I.A study on the equilibrium between copper matte and slag[J].Canadian Metallurgical Quarterly,1986,25(2):113-121.
    [7]TAN Peng-fu,ZHANG Chuan-fu.Computer model of copper smelting process and distribution behaviors of accessory elements[J].Journal of Central South University of Technology,1997,4(1):36-41.(in Chinese)
    [8]NAGAMORI M,ERRINGTON W J,MACKEY P J,POGGI D.Thermodynamic simulation model of the Isasmelt process for copper matte[J].Metall Mater Trans B,1994,25(6):839-853.
    [9]TONG Chang-ren,WU Wei-guo,ZHOU Xiao-xue.Establishment and application of multiphase equilibrium mathematical model for copper flash smelting process[J].Nonferrous Metals Engineering&Research,2006,27(6):6-9.(in Chinese)
    [10]WEI Qin-sheng,HU Yang-dong,AN Wei-zhong,WU Lian-ying,LIU Jing-jing.Equilibrium calculation of multiphase and multicomponent system by using modifiedτ-method[J].Chemical Engineering(China),2007,35(12):38-41.(in Chinese)
    [11]LIN Jin-qing,LI Hao-ran,HAN Shi-jun.Computation algorithm for simutaneous chemical and phase equilibrium by using genetic algorithm[J].Journal of Chemical Industry and Engineering,2002,53(6):616-620.(in Chinese)
    [12]XU Hui-lin,CHEN Jian,TANG Hong-qing.One-step algorithm for multiphase equilibrium calculation using state equations[J].Chemical Engineering(China),2003,31(5):66-69.(in Chinese)
    [13]LIDE D.CRC handbook of chemistry and physics[M].85th ed.Boca Raton:CRC press Inc,2004.
    [14]NéRON A,LANTAGNE G,MARCOS B.Computation of complex and constrained equilibria by minimization of the Gibbs free energy[J].Chemical Engineering Science,2012,82:260-271.
    [15]ROSSI C,CARDOZO-FILHO L,GUIRARDELLO R.Gibbs free energy minimization for the calculation of chemical and phase equilibrium using linear programming[J].Fluid Phase Equilibria,2009,278(1):117-128.
    [16]GUO Xue-yi,WANG Qin-meng,LIAO Li-le,TIAN Qing-hua,ZHANG Yong-zhu.Mechanism and multiphase interface behavior of copper sulfide concentrates melting in oxygen-enriched bottom blowing furnace[J].Nonferrous Metals Science and Engineering,2014,5(5):28-34.(in Chinese)
    [17]NAGAMORI M,MACKEY P J.Thermodynamics of copper matte converting:Part I.Fundamentals of the noranda process[J].Metallurgical Transactions B,1978,9(2):255-265.
    [18]SEO K W,SOHN H Y.Mathematical modeling of sulfide flash smelting process.Part III:Volatilization of minor elements[J].Metallurgical Transactions B,1991,22(6):791-799.
    [19]TAKEDA Y,ISHIWATA S,YAZAWA A.Distribution equilibria of minor elements between liquid copper and calcium ferrite slag[J].Transactions of the Japan Institute of Metals,1983,24(7):518-528.
    [20]CHAUBAL P C,SOHN H Y,GEORGE D B,BAILEY L K.Mathematical modeling of minor-element behavior in flash smelting of copper concentrates and flash converting of copper mattes[J].Metallurgical Transactions B,1989,20(1):39-51.
    [21]ENGELBRECHT A.Fundamentals of computational swarm intelligence[M].1st ed.New Jersey:John Wiley&Sons,Inc.,2006.
    [22]KENNEDY J,EBERHART R.Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks.Piscataway,NJ:IEEE Service Center,1995:1942-1948.
    [23]YENIAY O.Penalty function methods for constrained optimization with genetic algorithms[J].Mathematical and Computational Applications,2005,10(1):45-56.
    [24]PAQUET U,ENGELBRECHT A.Particle swarms for linearly constrained optimization[J].Fundamenta Informaticae,2007,76(1-2):147-170.
    [25]CHENG Biao,CHEN De-zhao.Complex phase equilibrium computation based on hybrid particle swarm optimization[J].Journal of Chemical Engineering of Chinese Universities,2008,22(2):320-324.
    [26]AGUIRRE A,ZAVALA A,DIHARCE E,RIONDA S.COPSO:Constrained optimization via PSO algorithm[J].Center for Research in Mathematics(CIMAT).Technical report No.I-07-04/22-02-2007,2007:1-30.
    [27]VOGLIS C,PARSOPOULOS K,PAPAGEORGIOU D,LAGARIS I,VRAHATIS M.Mempsode:A global optimization software based on hybridization of population-based algorithms and local searches[J].Computer Physics Communications,2012,183(5):1139-1154.
    [28]VOGLIS C,PIPERAGKAS G,PARSOPOULOS K,PAPAGEORGIOU D,LAGARIS I.Mempsode:comparing particle swarm optimization and differential evolution within a hybrid memetic global optimization framework[C]//Proceedings of the 14th annual conference companion on Genetic and evolutionary computation.New York,NY,USA:ACM,2012:253-260.
    [29]ZHOU Xiao-jun,YANG Chun-hua,GUI Wei-hua.State transition algorithm[J].Journal of Industrial and Management Optimization,2012,8(4):1039-1056.(in Chinese)
    [30]SCHUTTE J,GROENWOLD A.A study of global optimization using particle swarms[J].Journal of Global Optimization,2005,31(1):93-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700