用户名: 密码: 验证码:
市夏季大气臭氧生成对前体物的敏感性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sensitivity analysis of atmospheric ozone formation to its precursors in summer of Changsha
  • 作者:伏志强 ; 戴春皓 ; 王章玮 ; 郭佳 ; 秦普丰 ; 张晓山
  • 英文作者:FU Zhiqiang;DAI Chunhao;WANG Zhangwei;GUO Jia;QIN Pufeng;ZHANG Xiaoshan;Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Hunan Agricultural University;
  • 关键词:臭氧 ; 挥发性有机物 ; 相对增量反应活性 ; 基于观测的光化学模型 ; 市夏季
  • 英文关键词:ozone;;VOCs;;relative incremental activities;;observation-based model;;Changsha summer
  • 中文刊名:HJHX
  • 英文刊名:Environmental Chemistry
  • 机构:中国科学院生态环境研究中心;中国科学院大学;湖南农业大学;
  • 出版日期:2019-03-05 09:59
  • 出版单位:环境化学
  • 年:2019
  • 期:v.38
  • 基金:中国科学院战略性先导科技专项(XDB14020205);; 国家重点研发计划项目(2016YFC0203200)资助~~
  • 语种:中文;
  • 页:HJHX201903010
  • 页数:8
  • CN:03
  • ISSN:11-1844/X
  • 分类号:93-100
摘要
本文利用长市区环境空气质量监测站点在线观测资料,结合罐采样-三级冷阱预浓缩-气相色谱法分析非甲烷烃类化合物和衍生化-高效液相色谱法分析醛酮类化合物,基于观测的光化学模型分析了长市区2017年5月和9月部分时段臭氧生成对前体物的敏感性.结果表明,观测期间长市区臭氧浓度日变化均呈现典型的单峰特征,峰值浓度出现在15时左右,凌晨高浓度一氧化氮呈现对臭氧明显的滴定效应;5月非甲烷烃浓度和醛酮总浓度较9月高,非甲烷烃主要组成为烷烃和芳香烃类,其次为植物源烃类,而甲醛、乙醛和丙酮为醛酮类化合物主要组分.白天随着光化学过程的发展,非甲烷烃被逐渐消耗,其活性浓度随之降低.模型分析发现:5月份氮氧化物和植物源烃类对长市区臭氧生成贡献最大,削减氮氧化物对臭氧控制最为有效;而9月臭氧生成对烯烃和芳香烃最为敏感,削减人为源烯烃和芳香烃对臭氧控制最为有效.
        Using on-line observational data from a local ambient air monitoring station in urban Changsha and non-methane hydrocarbons and aldehydes ketones species determined by GC/Dean-switch/FID/FID coupled with a three-stage preconcentration and adsorption tube sampling-high performance liquid chromatography respectively, we applied an observation-based model(OBM) to analyze the sensitivity of typical ozone formation to ozone precursors in May and September 2017. The results showed clear diurnal variation of ozone with typical unimodal distribution and high peak concentration around 15:00, and nocturnal titration effects of enhanced nitric oxide on ozone were obvious in this study. Concentrations of non-methane hydrocarbons, aldehydes and ketones were much higher in May than those in September. In both months the main components of non-methane hydrocarbon were alkanes, aromatics and biogenic volatile organic compounds, and formaldehyde, acetaldehyde and acetone were the most abundant compounds for aldehydes and ketones. As the photochemical processes developed in daytime, non-methane hydrocarbons were consumed gradually and subsequently lowered the activity concentrations. Model analysis found that nitrous oxides and biogenic volatile organic compounds contributed mainly to ozone formation in May, and ozone formation was more sensitive to alkenes and aromatics in September. We therefore propose that abatement of nitrous oxides in May and alkenes and aromatics from anthropogenic sources in September would be an effective way to control ozone in urban Changsha.
引文
[1] 唐孝炎张远航, 邵敏. 大气环境化学第二版[M].北京: 高等教育出版社, 2006.TANG XY, ZHANG YH, SHAO M. Atomospheric environmental chemistry. Second edition. [M]. Beijing: Higher Education Press,2006 (in Chinese).
    [2] JOHN H. SEINFELD S N P. Atmospheric chemistry and physics: From air pollution to climate change [M]. New Jersey: A Wiley-Interscience Publication. 2006.
    [3] MONKS P S, ARCHIBALD A T, COLETTE A, et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer [J]. Atmos Chem Phys, 2015, 15(15): 8889-8973.
    [4] WILKINSON S, MILLS G, ILLIDGE R, et al. How is ozone pollution reducing our food supply? [J]. J Exp Bot, 2012, 63(2): 527-536.
    [5] ZAK D R, HOLMES W E, PREGITZER K S. Atmospheric CO2 and O3 alter the flow of 15N in developing forest ecosystems [J]. Ecology, 2007, 88(10): 2630-2639.
    [6] USEPA Ozone Pollution [EB/OL].[2017-07-01]. https://www.epa.gov/ozone-pollution
    [7] WHO Air quality guidelines-global update 2005 [EB/OL].[2017-07-01]. http://www.who.int/phe/health_topics/outdoorair_aqg/zh/
    [8] IPCC AR5 2013 Chapter8 [EB/OL].[2017-07-01]. http://www.ipcc.ch/report/ar5/wg1/
    [9] CARDELINO C A, CHAMEIDES W L. An observation-based model for analyzing ozone precursor relationships in the Urban Atmosphere [J]. Journal of the Air & Waste Management Association, 1995, 45(3): 161-180.
    [10] SILLMAN S. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments [J]. Atmos Environ, 1999, 33(12): 1821-1845.
    [11] WEI W, LV Z, CHENG S, et al. Characterizing ozone pollution in a petrochemical industrial area in Beijing, China: A case study using a chemical reaction model [J]. Environmental Monitoring and Assessment, 2015, 187(6): 377-387
    [12] WANG T, NIE W, GAO J, et al. Air quality during the 2008 Beijing Olympics: Secondary pollutants and regional impact [J]. Atmos Chem Phys, 2010, 10(16): 7603-7615.
    [13] SHAO M, LU S, LIU Y, et al. Volatile organic compounds measured in summer in Beijing and their role in ground-level ozone formation [J]. J Geophys Res-Atmos, 2009, 114, (D00G): 6-19.
    [14] AN J, ZOU J, WANG J, et al. Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China [J]. Environ Sci Pollut R, 2015, 22(24): 19607-19617.
    [15] XUE L K, WANG T, GAO J, et al. Ground-level ozone in four Chinese cities: Precursors, regional transport and heterogeneous processes [J]. Atmos Chem Phys, 2014, 14(23): 13175-13188.
    [16] SHI C, WANG S, LIU R, et al. A study of aerosol optical properties during ozone pollution episodes in 2013 over Shanghai, China [J]. Atmospheric Research, 2015, 153 235-249.
    [17] SHAO M, ZHANG Y, ZENG L, et al. Ground-level ozone in the Pearl River delta and the roles of VOC and NOx in its production [J]. Journal of Environmental Management, 2009, 90(1): 512-518.
    [18] JIA C, MAO X, HUANG T, et al. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China [J]. Atmospheric Research, 2016, 169: 225-236.
    [19] LYU X P, CHEN N, GUO H, et al. Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China [J]. Science of the Total Environment, 2016, 541(Supplement C): 200-209.
    [20] WANG T, XUE L, BRIMBLECOMBE P, et al. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects [J]. Science of the Total Environment, 2017, 575: 1582-1596.
    [21] 中国环保部环境状况公报.[EB/OL].[2018-03-01]. http://www.zhb.gov.cn/. Ministry of Environmental Protection.[EB/OL].[2018-03-01]. http://www.zhb.gov.cn/ (in Chinese).
    [22] 长环保局环境空气质量[EB/OL].[2018-03-01].http://hbj.changsha.gov.cn/sjtj/jcsj/hjkqzl/index.htmlChangsha Environmental Protection Bureau. [EB/OL].[2018-03-01].http://hbj.changsha.gov.cn/sjtj/jcsj/hjkqzl/index.html(in Chinese).
    [23] 谭菊,许雄飞,白露,等. 长市大气中总挥发性有机物分布特征、变化规律及污染对策研究 [J]. 环境科学与管理, 2016, 41 (1): 105-107.TAN J, XU X F, QU B L, et al. Analysis on atmospheric distribution feature,variability and pollution disposal strategy of TVOC in Changsha [J]. Environmental Science and Management. 2016, 41 (1): 105-107(in Chinese).
    [24] 贾海鹰,李矛,程兵芬,等. 长市城区臭氧浓度特征研究 [J]. 环境科学与技术, 2017, 40 (2): 168-173.JIA H Y, LI M, CHENG B F, et al. Analysis of the characteristics of ozone concentration in urban area of Changsha [J]. Environmental Science & Technology, 2017, 40 (2):168-173. (in Chinese).
    [25] ATKINSON R, AREY J. Atmospheric Degradation of Volatile Organic Compounds [J]. Chemical Reviews, 2003, 103(12): 4605-4638.
    [26] RUSSELL A, DENNIS R. NARSTO critical review of photochemical models and modeling [J]. Atmos Environ, 2000, 34(12): 2283-2324.
    [27] SAUNDERS S M, JENKIN M E, DERWENT R G, et al. Protocol for the development of the master chemical mechanism, MCM v3 (Part A): Tropospheric degradation of non-aromatic volatile organic compounds [J]. Atmos Chem Phys, 2003, 3(1): 161-180.
    [28] JENKIN M E, SAUNDERS S M, WAGNER V, et al. Protocol for the development of the master chemical mechanism, MCM v3 (Part B): Tropospheric degradation of aromatic volatile organic compounds [J]. Atmos Chem Phys, 2003, 3(1): 181-193.
    [29] KANAYA Y, POCHANART P, LIU Y, et al. Rates and regimes of photochemical ozone production over central east China in June 2006: A box model analysis using comprehensive measurements of ozone precursors [J]. Atmos Chem Phys, 2009, 9(20): 7711-7723.
    [30] XUE L K, WANG T, GUO H, et al. Sources and photochemistry of volatile organic compounds in the remote atmosphere of western China: Results from the Mt. Waliguan Observatory [J]. Atmos Chem Phys, 2013, 13(17): 8551-8567.
    [31] 刘全,王跃思,吴方堃,等. 长大气中VOCs研究 [J]. 环境科学, 2011, 32(12): 3543-3548.LIU Q, WANG Y, WU F K, et al. Observation and study on atmospheric VOCs in Changsha City [J]. Chinese Journal of Environmental Science, 2011, 32(12): 3543-3548(in Chinese).
    [32] ZHANG J, WANG Y, WU F, et al. Nonmethane hydrocarbon measurements at a suburban site in Changsha City, China [J]. Science of the Total Environment, 2009, 408(2): 312-317.
    [33] GUO H, LING Z H, CHENG H R, et al. Tropospheric volatile organic compounds in China [J]. Science of the Total Environment, 2017, 574(Supplement C): 1021-1043.
    [34] CHAMEIDES W L, FEHSENFELD F, RODGERS M O, et al. Ozone precursor relationships in the ambient atmosphere [J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D5): 6037-6055.
    [35] 陆克定,张远航,苏杭,等. 珠江三角洲夏季臭氧区域污染及其控制因素分析 [J]. 中国科学:化学, 2010, 40(4): 407-420.LU K D, ZHANG Y H, SU H, et al. Regional ozone pollution and key controlling factors of photochemical ozone production in Pearl River Delta during summer time [J].Scientia Sinica Chimica, 2010, 40(4): 407-420(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700