用户名: 密码: 验证码:
难熔金属含氧酸盐电化学解离-合金化短流程绿色工艺
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Alloys preparation from refractory metal oxysalts by molten salt electro-deoxidation using liquid cathode
  • 作者:王志 ; 王明涌 ; 翁威
  • 英文作者:Zhi WANG;Mingyong WANG;Wei WENG;National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences;State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing;
  • 关键词:熔盐电解 ; 难熔金属 ; 金属含氧酸盐 ; 液体金属阴极
  • 英文关键词:molten salt electrolysis;;refractory metals;;metal oxysalts;;liquid metal cathode
  • 中文刊名:HGYJ
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:中国科学院过程工程研究所绿色过程与工程重点实验室湿法冶金清洁生产技术国家工程实验室;北京科技大学钢铁冶金新技术国家重点实验室;
  • 出版日期:2019-05-27 17:09
  • 出版单位:过程工程学报
  • 年:2019
  • 期:v.19
  • 基金:国家重点研发计划资助项目(编号:2018YFC1901801);; 国家自然科学基金资助项目(编号:U1702251)
  • 语种:中文;
  • 页:HGYJ2019S1010
  • 页数:7
  • CN:S1
  • ISSN:11-4541/TQ
  • 分类号:70-76
摘要
针对难熔金属传统冶金流程长、能耗高和污染重的问题,介绍了以难熔金属含氧酸盐(如CaTiO3, NaVO3, Na2CrO4等)中间体直接熔盐电解(液态阴极)制取合金的短流程新过程。以熔点低、可溶、可电离的难熔金属含氧酸盐为电解反应物直接实现难熔金属的合金化,构建冶金-材料一体化的熔盐电解新体系,是缩短流程和实现冶金资源"快速成材"的创新路径。新过程弃用污染性工艺,环境友好,符合高效绿色冶金原则,有潜力成为一种普适性新方法。要点:(1)新工艺符合冶金过程绿色化、高效短程化及材料增值化的需求。(2)以低熔点的可溶性矿物中间体为原料,益于物质直接快速电解转化。(3)液态金属阴极可原位耦合电解还原与合金化过程,促成冶金-材料一体化制备。(4)深度电解还原、电效提升及液态阴极的定制优选是面临的主要挑战。
        Long processes, high energy consumption and severe pollution are the issues for the conventional metallurgy of refractory metals. Instead of the thermal reduction method, molten salt electro-deoxidation is the most promising technique to produce refractory metals. Herein, a new process is proposed for direct transforming typical refractory metal(V/Cr/Ti) oxysalts in melting state to metal or alloys by molten salt electrolysis with liquid cathode. Refractory metal oxysalts with low melting point are used as both electrolytic reactants and conductive molten salts. This innovation work would provide theoretical foundation for building universal and green method to produce refractory metals with high efficiency. Key learning points:(1) The new process satisfies the industrial needs for green metallurgy, high efficiency, short process and value-added production.(2) Highly soluble refractory metal oxysalts with low melting points is beneficial to a high-productivity and low-energy-input molten salt electrolysis process.(3) The electrochemical reduction and alloying process can be in-situ coupled in a liquid cathode, contributing to one-pot conversion of refractory metal oxysalts to value-added alloys.(4) Deep electrochemical reduction, high current efficiency and customization design of liquid metal cathode are the main challenges.
引文
[1]Kroll W J.The production of ductile titanium[J].Journal of the Electrochemical Society,1940,78:35-47.
    [2]Hunter M A.Metallic titanium[J].Journal of the American Chemistry Society,1910,32(3):330-336.
    [3]Nickels L.Kroll process alternative emergies[J].Metal Powder Report,2013,68(1):27-29.
    [4]Zhao K,Wang Y W,Peng J P,et al.Formation of Ti or TiCnanopowder from TiO2 and carbon powders by electrolysis in molten NaCl-KCl[J].RSC Advance,2016,6:8644-8650.
    [5]Kim C,Lee C R,Song Y E,et al.Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating wastewater[J].Chemical Engineering Journal,2017,328(15):703-707.
    [6]Fang D,Zhang X,Dong M,et al.A novel method to remove chromium,vanadium and ammonium from vanadium industrial waste water using a byproduct of magnesium-based wet flue gas desulfurization[J].Journal of Hazardous Materials,2017,336(15):8-20.
    [7]张明杰,王兆文.熔盐电化学原理与应用[M].北京:化学工业出版社,2006:94-116.Zhang M J,Wang Z W.Principles and applications of molten salt electrochemistry[M].Beijing:Chemical Industry Press,2006:94-116.
    [8]Grjotheim K,Kvande H,Li Q F,et al.Metal production by molten salt electrolysis[M].Beijing:China University of Mining and Technology Press,1998:37-49.
    [9]Ginatta M V.Why produce titanium by EW[J].Journal of the Minerals Metals and Materials Society,2000,52(5):18-20.
    [10]Ginatta M V,Orsello G.Plant for the electrolytic production of reactive metals in molten salt baths:US4670121[P].1987-06-02.
    [11]Cotarta A.Electrochemistry of molten LiCl-KCl-CrCl3 and LiClKCl-CrCl2 mixtures[J].Journal of Applied Electrochemistry,1997,27:651-658.
    [12]Tripathy P K.Electrodeposition of vanadium from a molten salt bath[J].Journal of Applied Electrochemistry,1996,26:887-890.
    [13]Suzuki R O,Teranuma K,Ono K.Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2[J].Metallurgical and Materials Transaction B,2003,34:287-295.
    [14]Okabe T H,Oda T,Mitsuda Y.Titanium powder by preform reduction process(PRP)[J].Journal of Alloys and Compounds,2004,364(1/2):156-163.
    [15]Chen G Z,Fray D J,Farthing T W.Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride[J].Nature,2000,407:361-364.
    [16]Chen G Z,Fray D J,Farthing T W.Cathodic deoxygenation of the alpha-case on titanium and alloys in molten calcium chloride[J].Metallurgical and Materials Transaction B,2001,32(6):1041-1052.
    [17]Suzuki R O,Fukui S.Reduction of TiO2 in molten CaCl2 by Ca deposited during CaO electrolysis[J].Materials Transactions,2004,45(5):1665-1671.
    [18]Suzuki R O.Direct reduction processes for titanium oxide in molten salt[J].JOM,2007,59(1):68-71.
    [19]Jiao S Q,Zhu H M.Novel metallurgical process for titanium production[J].Journal of Material Research,2006,21(9):2172-2175.
    [20]高玉明.熔盐电解法制取钨粉的试验与研究[D].沈阳:东北大学,1997:62-79.Gao Y M.Experimental research on preparation of tungsten powder by molten salt electrolysis[D].Shenyang:Northeastern University,1997:62-79.
    [21]冯乃祥,孙阳,葛贵军.NaCl-Na2WO4-WO3系熔盐电解法制备超细钨粉的研究[J].稀有金属,2001,25(5):374-377.Feng N X,Sun Y,Ge G J.Study on producing ultrafine tungsten powder by electrolysis in molten salts of NaCl-Na2WO4-WO3system[J].Rare Metals,2001,25(5):374-377.
    [22]王旭,廖春发,杨文强,等.CaWO4-NaCl-CaCl2体系熔盐电解制备钨粉的表征与电化学分析[J].中国有色金属学报,2012,22(5):1482-1487.Wang X,Liao C F,Yang W Q,et al.Characterization and electrochemical analysis of tungsten powder prepared by molten salt electrolysis in CaWO4-CaCl2-NaCl system[J].The Chinese Journal of Nonferrous Metals,2012,22(5):1482-1487.
    [23]Martinez A M,Castrillejo Y,et al.Chemical and electrochemical behavior of chromium in molten chlorides[J].Journal of Electroanalytical Chemistry,2000,493:1-7.
    [24]Propp J H,Laitinen H A.Electrochemical reduction products of chromate(VI)in molten lithium chloride-potassium chloride eutectic[J].Analytical Chemistry,1969,41:644-648.
    [25]Malysheva V V.High temperature electrometallurgical synthesis of tungsten and molybdenum carbides[J].Russian Journal of Nonferrous Metals,2011,52:262-265.
    [26]Malyshev V V,Hab A I.Electrodepositited molybdenum powders and coatings and their physicalchemical properties(a survey)[J].Materials Science,2005,41(1):25-38.
    [27]Gasviani N A,Khutsishvili M S,Abazadze M L.Electrochemical reduction of sodium metavanadate in an equimolar KCl-NaCl melt[J].Russian Journal of Electrochemistry,2006,42:931-937.
    [28]王明涌,翁威,王东,等.一种难熔金属含氧酸盐直接电解制备金属的方法:CN104451783A[P].2015-03-25.Wang M Y,Weng W,Wang D,et al.A method for metals production from refractory metal oxysalts by molten salt electrolysis:CN104451783A[P].2015-03-25.
    [29]王明涌,刘洋,翁威,等.一种难熔金属含氧酸盐熔盐电解过程碱回收与熔盐循环方法:CN104911635A[P].2015-09-16.Wang M Y,Liu Y,Weng W,et al.A method for recycling of alkaline oxide and molten salts during molten salt electrolysis of refractory metal oxysalts:CN104911635A[P].2015-09-16.
    [30]张燕.钒酸钠结晶及其转化工艺研究[D].北京:北京科技大学,2010:17-30.Zhang Y.Study of sodium orthovanadate crystallization and conversion process[D].Beijing:University of Science and Technology Beijing,2010:17-30.
    [31]Feng M,Zheng S L,Wang S N,et al.Solubility investigations in the quaternary NaOH-Na3VO4-Na2CrO4-H2O system at 40℃and80℃[J].Fluid Phase Equilibria,2013,360:338-342.
    [32]Li J C,Guo Z C,Gao J T,et al.Evaluation of isothermal separating perovskite phase from CaO-TiO2-SiO2-Al2O3-MgO melt by super gravity[J].Metallurgical and Materials Transaction B,2014,45:1171-1174.
    [33]Cherginets V L.On studies of oxide solubilities in melts based on alkaline halides[J].Electrochimica Acta,1997,42:3619-3627.
    [34]彭艳.钛酸盐相结构调控及其电化学解离的研究[D].北京:中国科学院过程工程研究所,2017:80-89.Peng Y.Structural control of titanate and its electro-deoxidation mechanisms[D].Beijing:Institute of Process Engineering,Chinese Academy of Sciences,2017:80-89.
    [35]Kim J W,Lee D N.Electrowinning of tungsten from fused bath composed of calcium chloride,calcium oxide and tundsten oxide[J].Daehan Hwahak Hwoejee,1966,10(1):32-43.
    [36]Clark R P,Reinhardt F W.Phase diagram for the ternary system CaCl2-KCl-CaCrO4[J].Thermochimica Acta,1976,14:113-129.
    [37]Xiao W,Wang X,Yin H Y,et al.Verification and implication of the dissolution-electrodeposition process during the electro-reduction of solid silica in molten CaCl2[J].RSC Advances,2012,19:7588-7593.
    [38]Weng W,Wang M Y,Gong X Z,et al.One-step electrochemical preparation of metallic vanadium from sodium metavanadate in molten chlorides[J].International Journal of Refractory Metals and Hard Materials,2016,55:47-53.
    [39]Nitta K,Nohira T,Hagiwara R,et al.Electrodeposition of tungsten from ZnCl2-NaCl-KCl-KF-WO3 melt and investigation on tungsten species in the melt[J].Electrochimica Acta,2010,55:1278-1281.
    [40]Weng W,Wang M Y,Gong X Z,et al.Mechanism analysis of carbon contamination and the inhibition by an anode structure during soluble K2CrO4 electrolysis in CaCl2-KCl molten salt[J].Journal of the Electrochemical Society,2017,164(12):E360-E366.
    [41]Weng W,Wang M Y,Gong X Z,et al.Direct electro-deposition of metallic chromium from K2CrO4 in the equimolar CaCl2-KCl molten salt and its reduction mechanism[J].Electrochimica Acta,2016,212:162-170.
    [42]Weng W,Wang M Y,Gong X Z,et al.Electrochemical preparation of V2O3 from NaVO3 and its reduction mechanism[J].Journal of Wuhan University of Technology(Materials Science Edition),2017,32:1019-1024.
    [43]翁威.典型难熔金属含氧酸盐熔盐电解金属的基础研究[D].北京:北京科技大学,2017:45-93.Weng W.Basic research on direct preparation of metals from refractory metal oxysalts by molten salt electrolysis[D].Beijing:University of Science and Technology Beijing,2017:45-93.
    [44]Weng W,Wang M Y,Gong X Z,et al.Thermodynamic analysis on the direct preparation of metallic vanadium from NaVO3 by molten salt electrolysis[J].Chinese Journal of Chemical Engineering,2016,24:671-676.
    [45]Cherginets V L.On studied of oxide solubilities in melts based on alkaline halides[J].Electrochimica Acta,1997,42:3619-3627.
    [46]Yin H Y,Tang D Y,Mao X H,et al.Electrolytic calcium hexaboride for high capacity anode of aqueous primary batteries[J].Journal of Materials Chemistry A,2015,29:15184-15189.
    [47]Jiao H D,Wang J X,Zhang L,et al.Electrochemically depositing titanium(III)ions at liquid tin in a NaCl-KCl melt[J].RSC Advances,2015,76:62235-62240.
    [48]Poltorak L,Morakchi K,Herzog G,et al.Electrochemical characterization of liquid-liquid micro-interfaces modified with mesoporous silica[J].Electrochimica Acta,2015,179:9-15.
    [49]Xu Y,Jiao H D,Wang M Y,et al.Direct preparation of V-Al alloy by molten salt electrolysis of soluble NaVO3 on a liquid Al cathode[J].Journal of Alloys and Compounds,2019,779:22-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700