用户名: 密码: 验证码:
溶液浸泡结合表面涂层制备超疏水-超疏油表面(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fabrication of Superhydrophobic-Superoleophobic Surfaces by Facile Solution-Immersion and Surface Coating
  • 作者:石彦 ; 冯晓娟 ; 康恺 ; 侯杨
  • 英文作者:SHI Yanlong;FENG Xiaojuan;KANG Kai;HOU Yang;College of Chemistry and Chemical Engineering,Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities,Hexi University;
  • 关键词:超疏水 ; 超疏油 ; 超双疏 ; 全氟辛酸锌 ; 溶液浸泡
  • 英文关键词:superhyrophobicity;;superoleophobicity;;superamphiphobicity;;zinc perfluorooctanoate;;solution immersion
  • 中文刊名:YYHX
  • 英文刊名:Chinese Journal of Applied Chemistry
  • 机构:河西学院化学化工学院甘肃省河西走廊特色资源利用省级重点实验室;
  • 出版日期:2019-03-10
  • 出版单位:应用化学
  • 年:2019
  • 期:v.36
  • 基金:Supported by the National Natural Science Foundation of China(No.41761061);; the Scientific Research Foundation of the Higher Education Institutions of Gansu Province(No.2016B-091);; the General Program of the Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities(No.XZ1603)~~
  • 语种:英文;
  • 页:YYHX201903014
  • 页数:9
  • CN:03
  • ISSN:22-1128/O6
  • 分类号:121-129
摘要
超疏水-超疏油材料在防污、防水、防油等领域有广泛的应用前景而引起人们极度关注。本文用全氟辛酸溶液浸泡锌粉制得超疏水-超疏油锌粉,用聚乙烯醇胶将超疏水-超疏油锌粉粘合、固定到玻璃、木头、塑料、不锈钢、纸片、石头表面后可制得超疏水-超疏油表面,水滴、油滴在其表面的接触角均超过150°。锌粉与全氟辛酸反应后生成Zn[CF_3(CF_2)_6COO]_2,氟代长链烷基的低表面能化学组成与微纳米粗糙结构的协调作用使其表现出超疏水、超疏油性能。相关研究有望为超双疏材料的设计、制备及其在自清洁、防水防油及抗污等领域的应用提供借鉴。
        Superhydrophobic-superoleophobic materials have received considerable attention due to their wide potential applications in the fields of anti-fouling,water-proof and oil-proof. In this paper,superhydrophobicsuperoleophobic zinc spheres are first prepared by immersing the zinc spheres into the solution of perfluorooctanoic acid,and then the superhydrophobic-superoleophobic surfaces are obtained by pasting the obtained superhydrophobicsuperoleophobic zinc spheres on substrates of glass,wood,plastic,stainless steel,paper and stone. The contact angles of water and oil droplets on these surfaces all exceed 150°. Zinc spheres react with perfluorooctanoic acid to form zinc perfluorooctanoate,and the coordinate effects of micro/nanometer rough structures and chemical composition with low surface energy of the long fluoroalkyl lead to the formation of superhydrophobicity and superoleophobicity.The research may offer a new idea for the design and fabrication of superamphiphobic materials,as well as their application in self-cleaning,waterproof,oil-proof and anti-contamination.
引文
[1]Barthlott W,Neinhuis C. Purity of the Sacred Lotus,or Escape from Contamination in Biological Surfaces[J]. Planta,1997,202(1):1-8.
    [2]Onda T,Shibuichi S,Satoh N,et al. Super-Water-Repellent Fractal Surfaces[J]. Langmuir,1996,12(9):2125-2127.
    [3]Wang B,Liang W W,Guo Z G,et al. Biomimetic Super-lyophobic and Super-lyophilic Materials Applied for Oil/Water Separation:A New Strategy Beyond Nature[J]. Chem Soc Rev,2015,44:336-361.
    [4]Chu Z L,Seeger S. Superamphiphobic Surfaces[J]. Chem Soc Rev,2014,43(8):2784-2798.
    [5]Chu Z L,Feng Y J,Seeger S. Oil/Water Separation with Selective Superantiwetting/Superwetting Surface Materials[J].Angew Chem Int Ed,2014,53:2-13.
    [6]Celia E,Darmanin T,Givenchy E T,et al. Recent Advances in Designing Superhydrophobic Surfaces[J]. J Colloid Interface Sci,2013,402:1-18.
    [7]Oner D,McCarthy T J. Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability[J]. Langmuir,2000,16(20):7777-7782.
    [8]Wang R,Hashimoto K,Fujishima A,et al. Photogeneration of Highly Amphiphilic TiO 2Surfaces[J]. Adv Mater,1998,10(2):135-138.
    [9]Tuteja A,Choi W,Ma M L,et al. Designing Superoleophobic Surfaces[J]. Science,2007,318(5856):1618-1622.
    [10]Butt H J,Semprebon C,Papadopoulos P,et al. Design Principles for Superamphiphobic Surfaces[J]. Soft Matter,2013,9(2):418-428.
    [11] Zhang J,Seeger S. Superoleophobic Coatings with Ultralow Sliding Angles Based on Silicone Nanofilaments[J]. Angew Chem Int Ed,2011,50(29):6652-6656.
    [12]Deng X,Mammen L,Butt H J,et al. Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating[J].Science,2012,335(6064):67-70.
    [13]Jin C,Jiang Y,Niu T,et al. Cellulose-Based Material with Amphiphobicity to Inhibit Bacterial Adhesion by Surface Modification[J]. J Mater Chem,2012,22(25):12562-12567.
    [14]Zhang Z,Zhu X,Yang J,et al. Facile Fabrication of Superoleophobic Surfaces with Enhanced Corrosion Resistance and Easy Repairability[J]. Appl Phys A:Mater Sci Process,2012,108(3):601-606.
    [15]Yao X,Song Y,Jiang L. Superoleophobic Surfaces with Controllable Oil Adhesion and Their Application in Oil Transportation[J]. Adv Funct Mater,2011,21(22):4270-4276.
    [16]Feng X J,Jiang L. Design and Creation of Superwetting/Antiwetting Surfaces[J]. Adv Mater,2006,18(23):3063-3078.
    [17]Bellanger H,Darmanin T,Givenchy E T,et al. Chemical and Physical Pathways for the Preparation of Superoleophobic Surfaces and Related Wetting Theories[J]. Chem Rev,2014,114(5):2694-2716.
    [18]Zhu X,Zhang Z,Xu X,et al. Facile Fabrication of a Superamphiphobic Surface on the Copper Substrate[J]. J Colloid Interface Sci,2012,367(1):443-449.
    [19]Zhao H,Law K Y,Sambhy V. Fabrication,Surface Properties,and Origin of Superoleophobicity for a Model Textured Surface[J]. Langmuir,2011,27(10):5927-5935.
    [20]Fujii T,Aoki Y,Habazaki H. Fabrication of Super-Oil-Repellent Dual Pillar Surfaces with Optimized Pillar Intervals[J].Langmuir,2011,27(19):11752-11756.
    [21]Jin H,Tian X,Ikkala O,et al. Preservation of Superhydrophobic and Superoleophobic Properties upon Wear Damage[J].ACS Appl Mater Interfaces,2013,5(3):485-488.
    [22] Xu X,Zhang Z,Guo F,et al. Superamphiphobic Self-Assembled Monolayer of Thiol on the Structured Zn Surface[J].Colloids Surf A,2012,396:90-95.
    [23]Fujii T,Sato H,Tsuji E,et al. Important Role of Nanopore Morphology in Superoleophobic Hierarchical Surfaces[J]. J Phys Chem C,2012,116(44):23308-23314.
    [24]Ganesh V A,Dinachali S S,Raut H K,et al. Electrospun SiO 2Nanofibers as a Template to Fabricate a Robust and Transparent Superamphiphobic Coating[J]. RSC Adv,2013,3(12):3819-3824.
    [25]Zhang M,Zhang T,Cui T. Wettability Conversion from Superoleophobic to Superhydrophilic on Titania/Single-Walled Carbon Nanotube Composite Coatings[J]. Langmuir,2011,27(15):9295-9301.
    [26]Artus G R J,Zimmermann J,Reifler F A,et al. A Superoleophobic Textile Repellent Towards Impacting Drops of Alkanes[J]. Appl Surf Sci,2012,258(8):3835-3840.
    [27]Meng H F,Wang S T,Xi J M,et al. Facile Means of Preparing Superamphiphobic Surfaces on Common Engineering Metals[J]. J Phys Chem C,2008,112(30):11454-11458.
    [28]Xi J M,Feng L,Jiang L. A General Approach for Fabrication of Superhydrophobic and Superamphiphobic Surfaces[J].Appl Phys Lett,2008,92(5):053102.
    [29] Nishino T,Meguro M,Nakamae K,et al. The Lowest Surface Free Energy Based on—CF3Alignment[J]. Langmuir,1999,15(13):4321-4323.
    [30]Coulson S R,Woodward I,Badyal J P S. Super-Repellent Composite Fluoropolymer Surfaces[J]. J Phys Chem B,2000,104(37):8836-8840.
    [31]Gao X F,Jiang L. Water-Repellent Legs of Water Striders[J]. Nature,2004,432(7013):36-36.
    [32]Cassie A B D,Baxter S T. Wettability of Porous Surfaces[J]. Faraday Soc,1944,40:546-551.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700