东昆仑西部野马泉地区三叠纪花岗岩成因与构造背景
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Petrogensis and Tectonic Setting of Yemaquan Triassic Granite from the West of the Eastern Kunlun Mountain Range,China
  • 作者:张爱奎 ; 莫宣学 ; 袁万明 ; 刘光莲 ; 朱传宝 ; 郝娜娜
  • 英文作者:ZHANG Ai-kui;MO Xuan-xue;YUAN Wang-ming;LIU Guang-lian;ZHU Chuan-bao;HAO Na-na;College of Earth Sciences and Mineral Resources, China University of Geosciences;No.3 Exploration Institute of Geology and Mineral Resources of Qinghai Province;
  • 关键词:三叠纪花岗岩 ; 岩石成因 ; 构造背景 ; 野马泉地区 ; 东昆仑西部
  • 英文关键词:Triassic granite;;petrogenesis;;granitoids tectonic setting;;Yemaquan area;;Kunlun Mountain
  • 中文刊名:KWXB
  • 英文刊名:Acta Mineralogica Sinica
  • 机构:中国地质大学地球科学与资源学院;青海省第三地质矿产勘查院;
  • 出版日期:2016-04-27 14:54
  • 出版单位:矿物学报
  • 年:2016
  • 期:v.36
  • 基金:青海省基金项目“青海省格尔木市野马泉地区铁多金属矿整装勘查区找矿部署研究”(青地调勘[2012]62号);; 中国地质调查局项目“青海省格尔木市野马泉地区铁矿调查评价”(项目编号:1212011086025)
  • 语种:中文;
  • 页:KWXB201602001
  • 页数:17
  • CN:02
  • ISSN:52-1045/P
  • 分类号:3-19
摘要
位于青海省东昆仑西部的野马泉地区三叠纪花岗岩分布广泛,本文通过花岗岩岩石学、地球化学、年代学研究,将晚古生代—早中生代造山旋回同碰撞阶段时限厘定为235~224 Ma,后碰撞时限厘定为224~204 Ma。研究表明,同碰撞阶段代表性侵入岩岩石组合为石英二长闪长岩-花岗闪长岩,具有钙碱性-高钾钙碱性系列准铝质-弱过铝质I型花岗岩的特征,岩石形成于下地壳或中下地壳,与幔源物质底侵作用和俯冲大洋物质"滞后"局部熔融有关,花岗闪长岩具有adakitic岩亲和性的特点。后碰撞阶段代表性侵入岩岩石组合为似斑状二长花岗岩-二长花岗岩-花岗斑岩,具有高钾钙碱性-钾玄岩系列准铝质-强过铝质S型花岗岩的特征,岩石形成于上地壳,含闪长质包体二长花岗岩源区具有EMⅡ富集地幔的印记,有别于不含包体的二长花岗岩。三叠纪花岗岩的形成可能经历了地幔底侵-洋壳"滞后"熔融和地壳熔融的深部过程。
        As a component of continental crust, granites are very important for unraveling the formation and evolution history of ocean basin closure and continents. Triassic granite is widely distributed in the Yemaquan area of the western part of the Eastern Kunlun Mountain Range, P.R. China. The petrogenesis and tectonic setting of granite in Yemaquan area have been poorly studied. Based on the petrology, geochemistry, and geochronology of the granitoids, authors consider that the syn-collisional orogenic stage of the late Paleozoic-early Mesozoic is 235-224 Ma, and post-collisional orogenic stage is 224-204 Ma. Associated with intrusive rocks in syn-collisional orogenic stage are quartz monzodiorites-granodiorites. These rocks are classified as calc-alkaline-high K calc-alkaline series and metaluminous-weakly peraluminous I-type granite. They formed in the lower crust or mid-lower crust, related to underplating of mantle material and delayed partial melting of the subduction oceanic material. Granodiorites are similar to the adakitic intrusive rocks. Associated with the intrusive rocks in post-collisional orogenic stage are porphyritic monzogranitegranite porphyry. These rocks are classified as high K calc-alkaline-shoshonitic series and metaluminousstrongly peraluminous S-type granite. They formed in the upper crust. The granite source region of monzogranite including dioritic enclaves, has the signs of EMⅡ, different from other monzogranite. Yemaquan Triassic granite formed as the deep course of mantle underplating, "lag-type" oceanic material partial melting and crust partial melting.
引文
[1]莫宣学,罗照华,邓晋福,等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报,2007,13(3):403-414.
    [2]罗照华,邓晋福,曹永清,等.青海省东昆仑地区晚古生代——早中生代火山活动与区域构造演化[J].现代地质,1999,13(1):51-56.
    [3]肖庆辉,邱瑞照,邢作云,等.花岗岩成因研究前沿的认识[J].地质论评,2007,53(S1):17-27.
    [4]王秉璋,陈静,罗照华,等.东昆仑祁漫塔格东段晚二叠世-早侏罗世侵入岩岩石组合时空分布、构造环境的讨论[J].岩石学报,2014,30(11):3213-3228.
    [5]陈国超,裴先治,李瑞保,等.东昆仑造山带晚三叠世岩浆混合作用:以和勒冈希里克特花岗闪长岩体为例[J].中国地质,2013,40(4):1044-1065.
    [6]Xiong Fuhao,Ma Changqian,Zhang Jinyang,et al.The origin of maficmicrogranular enclaves and their host granodiorites from East Kunlun,northern Qinghai-Tibet Plateau:Implications for magma mixing during subduction of Paleo-Tethyan lithosphere[J].Mineralogy and Petrology,2012,104(3-4):211-224.
    [7]谌宏伟,罗照华,莫宣学,等.东昆仑造山带三叠纪岩浆混合成因花岗岩的岩浆底侵作用机制[J].中国地质,2005,32(3):386-395.
    [8]刘成东,莫宣学,罗照华,等.东昆仑壳-慢岩浆混合作用:来自锆石SHRIMP年代学的证据[J].科学通报,2004,49(6):596-602.
    [9]罗照华,柯珊,曹永清,等.东昆仑印支晚期幔源岩浆活动[J].地质通报,2002,21(6):292-297.
    [10]高永宝,李文渊,马晓光,等.东昆仑尕林格铁矿床成因年代学及Hf同位素制约[J].兰州大学学报(自然科学版),2012,48(2):36-47.
    [11]张爱奎.青海野马泉地区晚古生代—早中生代岩浆作用与成矿研究[D].北京:中国地质大学,2012.
    [12]张雪亭,杨生德,杨站君,等.青海省板块构造研究-1:100万青海省大地构造图说明书[M].北京:地质出版社,2007.
    [13]张爱奎,莫宣学,李云平,等.青海西部祁漫塔格成矿带找矿新进展及其意义[J].地质通报,2010,29(7):1062-1074.
    [14]Liu Y S,Hu Z C,Gao S,et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology,2008,257(1-2):34-43.
    [15]Liu Y S,Gao S,Hu Z C,et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen:U-Pb dating,Hf isotopes and trace elements in zircons of mantle xenoliths[J].Journal of Petrology,2010,51(1-2):537-571.
    [16]Ludwig K R.User’s manual for ISOPLOT 3.00:A geochronological toolkit for Microsoft excel[J].Berkely Geochronology Center,2003,(4):71.
    [17]李世金,孙丰月,丰成友,等.青海东昆仑鸭子沟多金属矿的成矿年代学研究[J].地质学报,2008,82(7):949-955.
    [18]丰成友,王雪萍,舒晓峰,等.青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J].吉林大学学报(地球科学版),2011,41(6):1806-1817.
    [19]刘云华,莫宣学,喻学惠,等.东昆仑野马泉地区景忍花岗岩锆石SHRIMP U-Pb定年及其地质意义[J].岩石学报,2006,22(10):2457-2463.
    [20]张爱奎,刘光莲,丰成友,等.青海虎头崖多金属矿床地球化学特征及成矿-控矿因素研究[J].矿床地质,2013,32(1):94-108.
    [21]于淼,丰成友,保广英,等.青海尕林格铁矿床矽卡岩矿物学及蚀变分带[J].矿床地质,2013,32(1):55-76.
    [22]丰成友,李东生,吴正寿,等.东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成矿作用[J].西北地质,2010,43(4):10-17.
    [23]李洪普,刘具仓,张喜全,等.青海省柴南缘四角羊铁多金属矿区岩浆岩特征及其成矿意义[J].地质与勘探,2011,47(6):1009-1017.
    [24]刘建楠,丰成友,赵一鸣,等.青海野马泉矽卡岩铁锌多金属矿区侵入岩、交代岩及矿化蚀变特征[J].矿床地质,2013,32(1):77-93.
    [25]Le Maitre R W.A Classification of Igneous Rocks and Glossary of Terms[M].Oxford:Blackwell,1989.
    [26]Peccerillo R,Taylor S R.Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area,Northern Turkey Contrib[J].Mineral Petrol,1976,58:63-81.
    [27]Middlemost E A K.Magmas and Magmatic Rocks[M].London:Longman,1985:1-266.
    [28]邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用[M].北京:地质出版社,2003.
    [29]邓晋福,刘翠,冯艳芳,等.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类[J].中国地质,2010,37(4):1112-1118.
    [30]邓晋福,刘厚祥,赵海玲,等.燕辽地区燕山期火成岩与造山模型[J].现代地质,1996,10(2):137-148.
    [31]Sun S S,Mc Donough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[A].Saunders A D,Norry M J.Magmatism in the Ocean Basins[C].Geological Society,London,Special Publications,1989,42:313-345.
    [32]Wyllie P J,Wolf M B,Vanderlaan S R.Conditions for formation of tonalites and trondhjenites:Magmatic sources and products[A].de Wit M J,Ashwahl L D.Tectonic Evolution of Greenstone Belts[M].Oxford Univ.Press,1997,17:189-209.
    [33]Martin H.Adakitic magma:modern analogues of Archean granitods[J].Lithos,1999,46:411-429.
    [34]Allegre C J,Minster J K.Quantitative models of trace element behavior in magmatic processes[J].Earth and Planetary Science Letters,1978,38:1-25.
    [35]Zinder A,Hart S R.Chemical geodynamics[J].Ann Rev Earth Planet Sci,1986,14:493-573.
    [36]Chappell B W,White A J R.Two contrasting granite type[J].Pacific Geol,1974,8:173-174.
    [37]Collins W J.Nature and origin of A type granites with paticular reference to Southeastern Australia[J].Miner Petro,1982,80:189-200.
    [38]王德滋,舒良树.花岗岩构造岩浆组合[J].高校地质学报,2007,13(3):362-370.
    [39]Taylor S R,Mclennan S M.The Continental Crust:Its Composition and Evolution[M].Cambridge:Blackwell,1985.
    [40]Mcdonough W F.Compositional model for the earth’s core[A].Carlson R W.The Mantle and Core,Treatise on Geochemistry[M].Amsterdam:Elsevier,2003,2:547-568.
    [41]Tischendorf G.Classification of grantioids[J].Abroad Geological Science and Technology,1986,7:25-33.
    [42]Whalen J B,Currie K L,Chappell B W.A-type granites:geochemical characteristics,discriminatuon and petrogenesis[J].Contributions to Mineralogy and Petrology,1987,95:407-419.
    [43]Batchelor R A,Bowden P.Petrogenetic interpretation of granitoid rock series using multicationic parameters[J].Chemical Geology,1985,48:43-55.
    [44]Pearce J A,Harris N B W,Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Petrology,1984,25(4):956-983.
    [45]王秉璋.祁漫塔格地质走廊域古生代—中生代火成岩岩石构造组合研究[D].北京:中国地质大学,2011.
    [46]王永标,黄继春,骆满生,等.海西-印支早期东昆仑造山带南侧古海洋盆地的演化[J].地球科学-中国地质大学学报,1997,22(4):369-372.
    [47]蔡雄飞,罗中杰,刘德民,等.东昆仑三叠系一个不可忽视的地层单位-希里可特组[J].地层学杂志,2008,32(4):374-380.
    [48]郭正府,邓晋福,许志琴,等.青藏东昆仑晚古生代末—中生代中酸性火成岩与陆内造山过程[J].现代地质,1998,12(3):344-352.
    [49]李瑞保,裴先治,李佐臣,等.东昆仑东段晚古生代—中生代若干不整合面特征及其对重大构造事件的响应[J].地学前缘,2012,19(5):244-254.
    [50]Eklun D O,Konopelko D,Rutanen S.1.8 Ga Svecofennian postcollisional shoshonitic magmatism in the Fennoscandian shield[J].Lithos,1998,45:87-108.
    [51]Pearce J A.Source and settings of granitic rocks[J].Episodes,1996,19:120-125.
    [52]莫宣学,路凤香,沈上越,等.三江特提斯火山作用与成矿[M].北京:地质出版,1993.
    [53]Liegeois J P,Navez J,Hertogen J,et al.Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline grauttoids.The use of sliding normalization[J].Lithos,1998,45:1-28.
    [54]邓晋福,肖庆辉,苏尚国,等.火成岩组合与构造环境:讨论[J].高校地质学报,2007,13(3):392-402.
    [55]Condie K C.Plate Tectonics and Grustal Evolution[M].Oxford:Butterworth-Heinemann,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700