用户名: 密码: 验证码:
重金属生物有效性在矿山环境评价中应用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on the Application Bioavailability of Heavy Metals to Evaluate Ecological Risk in Mining Area
  • 作者:孙晓艳 ; 罗立强
  • 英文作者:SUN Xiaoyan;LUO Liqiang;National Research Center for Geoanalysis;China University of Geosciences;
  • 关键词:矿山 ; 重金属 ; 生物有效性 ; 环境污染 ; 风险评价
  • 英文关键词:mining area;;heavy metal;;bioavailability;;enviroment polltion;;risk assessment
  • 中文刊名:KCBH
  • 英文刊名:Conservation and Utilization of Mineral Resources
  • 机构:国家地质实验测试中心;中国地质大学(北京)地球科学与资源学院;
  • 出版日期:2018-06-07 10:24
  • 出版单位:矿产保护与利用
  • 年:2019
  • 期:v.39;No.219
  • 基金:国家重点研发计划项目(2016YFC0600603);; 国家高新技术研究发展计划(863)项目(2007AA06Z124);; 中国地质调查项目(DD20160340);; 国家自然科学基金项目(20775018,41201527)
  • 语种:中文;
  • 页:KCBH201901021
  • 页数:9
  • CN:01
  • ISSN:41-1122/TD
  • 分类号:106-114
摘要
重金属的生物有效性是决定重金属生态环境毒性的重要因素。生物有效性可为矿山土壤中重金属风险评价提供可靠的数据,提升评价质量。从厘清生物有效性概念入手,阐述了生物有效性研究方法的特性,评价了生物有效性在矿山环境评价中的应用,以重金属的生物有效性可以更好的评价重金属由土壤迁入植物的生态风险,更科学的确定重金属安全阈值,为矿山环境风险和人体健康风险评价提供新的方法和思路。
        While mining activities bring great economic benefits, high heavy metals concentration in soil has negative effects on ecosystems and generate potential health risks to human body. However, the total concentration of heavy metals in soil doesn't represent the fraction available for plants and the toxicty for ecosystems all the time because they accumulate in different geochemical froms. Bioavailability provides accuracy data to mine geological enviroment evaluation and improve the enviroment evaluation quality. Review the application bioavailability of trace metals to evaluation mining area environmental risk, found that bioavailabilty is better predictation of trace metal translocation from soil to crops and derivation of soil criteria of heavy metals, and provides new method for enviroment evaluation.
引文
[1] 徐佩,吴超,邱冠豪.我国铅锌矿山土壤重金属污染规律研究[J].土壤通报,2015,46(3):739-744.
    [2] Liao J, Wen Z, Ru X, et al. Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: Public health implications in Guangdong Province, China[J]. Ecotoxicology and environmental safety, 2016, 124:460-469.
    [3] 蔡锦辉,吴明光,汪雄武,等.广东大宝山多金属矿山环境污染问题及启示[J].华南地质与矿产,2005(4):50-54.
    [4] Fernández-Ondoňo E, Bacchetta G, Lallena A M, et al. Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia[J]. Journal of geochemical exploration, 2017, 172:133-141.
    [5] Kumpiene J, Bert V, Dimitriou I, et al. Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by gentle remediation options (GRO)[J]. Science of the total environment, 2014, 496:510-522.
    [6] Ehlers L J, Luthy R G. Contaminant bioavailability in soil and sediment[J]. Environmental science & technology, 2003, 37(15):295-302.
    [7] 周国华.土壤重金属生物有效性研究进展[J].物探与化探,2014,38(6):1097-1106.
    [8] Hamelink J L. Bioavailability: physical, chemical, and biological interaction[M]. Bocaraton: Lewis publishers, 1994.
    [9] Kim R Y, Yoon J K, Kim T S, et al. Bioavailability of heavy metals in soils: definitions and practical implementation a critical review[J]. Environmental geochemistry and health, 2015, 37(6):1041-1061.
    [10] Harmsen J. Measuring bioavailability: from a scientific approach to standard methods[J]. Journal of environmental quality, 2007, 36(5):1420-1428.
    [11] Fedotov P S, K?rdel W, Miró M, et al. Extraction and fractionation methods for exposure assessment of trace metals, metalloids, and hazardous organic compounds in terrestrial environments[J]. Critical reviews in environmental science & technology, 2012, 42(11):1117-1171.
    [12] Sánchezmarín P, Lorenzo J I, Blust R, et al. Humic acids increase dissolved lead bioavailability for marine invertebrates[J]. Environmental science & technology, 2007, 41(16):5679-5684.
    [13] Luo L, Shen Y, Liu J, et al. Investigation of Pb species in soils, celery and duckweed by synchrotron radiation X-ray absorption near-edge structure spectrometry[J]. Spectrochimica acta part B atomic spectroscopy, 2016, 122:40-45.
    [14] Suthar V, Memon K S, Mahmood-Ul-Hassan M. EDTA-enhanced phytoremediation of contaminated calcareous soils: heavy metal bioavailability, extractability, and uptake by maize and sesbania[J]. Environmental monitoring & assessment, 2014, 186(6):3957-3968.
    [15] Ashraf U, Kanu A S, Mo Z, et al. Lead toxicity in rice: effects, mechanisms, and mitigation strategies--a mini review[J]. Environmental science and pollution research international, 2015, 22(23):18318-18332.
    [16] Semple K T, Doick K J, Jones K C, et al. Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated[J]. Environmental science & technology, 2004, 38(12):228-231.
    [17] 刘俊华,张天红,薛澄泽.黑麦幼苗法对污泥中元素生物有效性的研究[J].陕西环境,1994(1):1-4.
    [18] 薛澄泽,刘俊华,李宗利,等.用黑麦幼苗法测定土壤中污染元素的生物有效性[J].环境化学,1995(1):32-37.
    [19] 周永章,宋书巧,杨志军,等.河流沿岸土壤对上游矿山及矿山开发的环境地球化学响应——以广西刁江流域为例[J].地质通报,2005,24(10):945-951.
    [20] 孟昭福,张增强,薛澄泽,等.替代黑麦幼苗测定土壤中重金属生物有效性的研究[J].农业环境科学学报,2001,20(5):337-340.
    [21] Tessier A, Campbell P G, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical chemistry, 1979, 51(7):844-851.
    [22] Feng M H, Shan X Q, Zhang S, et al. A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley[J]. Environmental pollution, 2005, 137(2):231-240.
    [23] Pueyo M, López-Sánchez J F, Rauret G. Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils[J]. Analytica chimica acta, 2004, 504(2):217-226.
    [24] Ladonin D V. Heavy metal compounds in soils: problems and methods of study[J]. Eurasian soil science, 2002, 35(6):605-613.
    [25] Garforth J M, Bailey E H, Tye A M, et al. Using isotopic dilution to assess chemical extraction of labile Ni, Cu, Zn, Cd and Pb in soils[J]. Chemosphere, 2016, 155:534-541.
    [26] R?mkens P F, Guo H Y, Chu C L, et al. Characterization of soil heavy metal pools in paddy fields in Taiwan: Chemical extraction and solid-solution partitioning[J]. Journal of soils and sediments, 2009, 9(3):216-228.
    [27] Gryschko R, Kuhnle R, Terytze K, et al. Soil extraction of readily soluble heavy metals and as with 1 M NH4NO3-solution evaluation of DIN 19730[J]. Journal of soils and sediments, 2004, 5(2):101-106.
    [28] Zhang M, Liu Z, Wang H. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice[J]. Communications in soil science & plant analysis, 2010, 41(7):820-831.
    [29] Castilho P D, Rix I. Ammonium acetate extraction for soil heavy metal speciation; model aided soil test interpretation[J]. International journal of environmental analytical chemistry, 1993, 51(1-4):59-64.
    [30] Bakircioglu D, Kurtulus Y B, Hilmi, et al. Comparison of extraction procedures for assessing soil metal bioavailability of to wheat grains[J]. Clean soil air water, 2011, 39(8):728-734.
    [31] Feng M H, Shan X Q, Zhang S Z, et al. Comparison of a rhizosphere-based method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat[J]. Chemosphere, 2005, 59(7):939-949.
    [32] Qian J, Shan X Q, Wang Z J, et al. Distribution and plant availability of heavy metals in different particle size fractions of soil[J]. Science of the total environment, 1996, 187(2):131-141.
    [33] Li H B, Zhao D, Li J, et al. Using the SBRC assay to predict lead relative bioavailability in urban soils: contaminant source and correlation model[J]. Environmental science & technology, 2016, 50(10):4989-4966.
    [34] Li H B, Cui X Y, Li K, et al. Assessment of in vitro lead bioaccessibility in house dust and its relationship to in vivo lead relative bioavailability[J]. Environmental science & technology, 2014, 48(15):8548-8555.
    [35] And R R R, Nicholas T B, And S W C, et al. An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media[J]. Environmental science & technology easton Pa, 1999, 33(4):642-649.
    [36] Denys S, Caboche J, Tack K, et al. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils[J]. Environmental science & technology, 2012, 46(11):6252-6260.
    [37] Ruby M V, Andy D, Rosalind S, et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J]. Environmental science & technology, 1996, 30(2):422-430.
    [38] Alvarenga P, Simoes I, Palma P, et al. Field study on the accumulation of trace elements by vegetables produced in the vicinity of abandoned pyrite mines[J]. Science of the total environment, 2014, 470-471:1233-1242.
    [39] Houba V J G, Lexmond T M, Novozamsky I, et al. State of the art and future developments in soil analysis for bioavailability assessment[J]. Science of the total environment, 1996, 178(1-3):21-28.
    [40] Han J, Kim J, Kim M, et al. Chemical extractability of As and Pb from soils across long-term abandoned metallic mine sites in Korea and their phytoavailability assessed by brassica juncea[J]. Environmental science and pollution research international, 2015, 22(2):1270-1278.
    [41] Qasim B, Motelica-heino M, Joussein E, et al. Potentially toxic element phytoavailability assessment in technosols from former smelting and mining areas[J]. Environmental science and pollution research international, 2015, 22(8):5961-5974.
    [42] Zhou H, Zeng M, Zhou X, et al. Assessment of heavy metal contamination and bioaccumulation in soybean plants from mining and smelting areas of southern Hunan Province, China[J]. Environmental toxicology & chemistry, 2013, 32(12):2719-2727.
    [43] Bara′c N, ?krivanj S, Muti′c J, et al. Heavy metals fractionation in agricultural soils of Pb/Zn mining region and their transfer to selected vegetables[J]. Water air soil pollution, 2016, 227(12):481-494.
    [44] Wan X, Dong H, Feng L, et al. Comparison of three sequential extraction procedures for arsenic fractionation in highly polluted sites[J]. Chemosphere, 2017, 178:402-410.
    [45] Zhang M K, Liu Z Y, Huo W. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice[J]. Communications in soil science & plant analysis, 2010, 41(7):820-831.
    [46] Anjos C, Magalhāes M C F, Abreu M M. Metal (Al, Mn, Pb and Zn) soils extractable reagents for available fraction assessment: comparison using plants, and dry and moist soils from the Bra?al abandoned lead mine area, portugal[J]. Journal of geochemical exploration, 2012, 113:45-55.
    [47] Gupta A K, Sinha S. Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. czern. (var. vaibhav) grown on tannery waste contaminated soil[J]. Journal of hazardous materials, 2007, 149(1):144-150.
    [48] Ngo L K, Pinch B M, Bennett W W, et al. Assessing the uptake of arsenic and antimony from contaminated soil by radish (raphanus sativus) using DGT and selective extractions[J]. Environmental pollution, 2016, 216:104-114.
    [49] Rauret G, López-Sánchez J F, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of environmental monitoring, 1999, 1(1):57-61.
    [50] Adamo P, Iavazzo P, Albanese S, et al. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils[J]. Science of the total environment, 2014, 500-501:11-22.
    [51] Anawar H M, Garcia-Sanchez A, Santa R I. Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils[J]. Chemosphere, 2008, 70(8):1459-1467.
    [52] Vázquez S, Moreno E, Carpena R O. Bioavailability of metals and As from acidified multicontaminated soils: use of white lupin to validate several extraction methods[J]. Environmental geochemistry and health, 2008, 30(2):193-198.
    [53] Reiley M C. Science, policy, and trends of metals risk assessment at EPA: how understanding metals bioavailability has changed metals risk assessment at US EPA[J]. Aquatic toxicology, 2007, 84(2):292-298.
    [54] 韦东普,马义兵.科技部“十三五”农业面源和重金属污染农田综合防治与修复技术研发重点专项“农田系统重金属迁移转化和安全阈值研究”项目正式启动[J].中国生态农业学报,2016,24(11):1577-1578.
    [55] Liu X, Song Q, Tang Y, et al. Human health risk assessment of heavy metals in soil-vegetable system: a multi-medium analysis[J]. Science of the total environment, 2013, 463-464:530-540.
    [56] Zhang S, Song J, Cheng Y, et al. Derivation of reliable empirical models describing lead transfer from metal-polluted soils to radish (raphanus sativa L.): determining factors and soil criteria[J]. Science of the total environment, 2017, 613-614:72-80.
    [57] 李富荣,文典,王富华,等.广东地区芸薹类叶菜-土壤镉污染相关性分析及土壤镉限量值研究[J].生态环境学报,2016,25(4):705-710.
    [58] Liu G, Tao L, Liu X, et al. Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China[J]. Journal of geochemical exploration, 2013, 132:156-163.
    [59] Rodriguez L, Ruiz E, Alonso-Azcarate J, et al. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain[J]. Journal of environmental management, 2009, 90(2):1106-1116.
    [60] 陆泗进,王业耀,何立环.会泽某铅锌矿周边农田土壤重金属生态风险评价[J].生态环境学报,2014(11):1832-1838.
    [61] 马亚梦,谭秀民,毛香菊,等.典型铁尾矿库重金属污染评价及生态修复建议[J].矿产保护与利用,2016(3):49-56.
    [62] 毛香菊,肖芳,马亚梦,等.内蒙古草原某铜钼矿区土壤重金属污染潜在生态危害评价[J].矿产保护与利用,2016(2):54-57.
    [63] Liu Y, Bello O, Rahman M M, et al. Investigating the relationship between lead speciation and bioaccessibility of mining impacted soils and dusts[J]. Environmental science & pollution research international, 2017, 24(20):17056-17067.
    [64] 姜林,彭超,钟茂生,等.基于污染场地土壤中重金属人体可给性的健康风险评价[J].环境科学研究,2014,27(4):406-414.
    [65] 李继宁,侯红,魏源,等.株洲市农田土壤重金属生物可给性及其人体健康风险评估[J].环境科学研究,2013,26(10):1139-1146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700