用户名: 密码: 验证码:
中酸性侵入岩的氧逸度计算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Calculation of oxygen fugacity for intermediate-acidic intrusive rocks
  • 作者:张聚全 ; 李胜荣 ; 卢静
  • 英文作者:ZHANG Ju-quan;LI Sheng-rong;LU Jing;Resources college,Hebei GEO University;School of Earth Sciences and Resources,China University of Geosciences Beijing;
  • 关键词:氧逸度 ; 矿物温压计 ; 黑云母 ; 花岗岩
  • 英文关键词:Oxygen fugacity;;mineral geothermobarometry;;biotite;;granite
  • 中文刊名:KWXB
  • 英文刊名:Acta Mineralogica Sinica
  • 机构:河北地质大学资源学院;中国地质大学地球科学与资源学院;
  • 出版日期:2018-02-15
  • 出版单位:矿物学报
  • 年:2018
  • 期:v.38
  • 基金:国家重点研发计划项目(编号:2016YFC0600106);; 国家自然科学基金(编号:41602028);; 河北地质大学博士科研启动基金(编号:BQ201609)
  • 语种:中文;
  • 页:KWXB201801001
  • 页数:14
  • CN:01
  • ISSN:52-1045/P
  • 分类号:4-17
摘要
氧逸度是岩石物理化学的1个重要参数,对岩浆演化、岩石成因和岩浆热液成矿具有明显的控制作用。含有变价元素的矿物常被用来计算成岩与成矿过程中的氧逸度,但是不同方法之间的对比研究较少,各种方法的适用性还不明晰。作者对晋东北黑狗背花岗岩体的氧逸度进行了较为系统的研究,通过黑云母、角闪石、磁铁矿-钛铁矿矿物对和锆石的Ce异常的氧逸度计算,发现不同方法的估算结果存在较大的差异,甚至会得出完全相左的结论。其中,基于Fe~(3+)/Fe~(2+)比值的黑云母和磁铁矿-钛铁矿氧逸度计计算结果吻合度较高,可适用于中酸性侵入岩的氧逸度研究,而基于Fe/(Fe+Mg)比值的氧逸度计算方法可能受到母岩浆化学成分的影响,不适合应用于低镁侵入岩的氧逸度估算。
        Oxygen fugacity is one of the important parameters of physical-chemical condition in petrology,which shows an obvious controlling action in the magmatic evolution, petrogenesis and magmatic-hydrothermal mineralization. Minerals containing variable valence elements are often used to calculate oxygen fugacity of rockforming and mineralization,but comparative study on different methods is rare,and the applicability of different methods is not clear. We studied the oxygen fugacity of Heigoubei granite pluton in the northeast of Shanxi Province,China by calculating biotite,hornblende,magnetite-ilmenite and zircon Ce anomalies. The estimated results by different methods show obvious difference,evenly the contradictory results. In contrast,oxygen fugacity calculated results based on Fe~(3+)/Fe~(2+) ratio of biotite and magnetite-ilmenite are comparable with each other,reflecting that those calculating methods are suitable for intermediate-acid intrusive rocks. Results calculated based on Fe/(Fe+Mg) ratio might be affected by chemical component of magmas,unsuitable for the calculation of intrusive rocks with low Mg content.
引文
[1]周珣若,王方正.岩石物理化学[M].郑州:河南科学技术出版社,1987:1-334
    [2]Ishihara S.The magnetite-series and ilmenite-series granitic rocks[J].Mining Geology,1977,27(145):293-305.
    [3]Evans K A,Elburg M A,Kamenetsky V S.Oxidation state of subarc mantle[J].Geology,2012,40(9):783-786.
    [4]Carmichael I S E.The redox states of basic and silicic magmas:a reflection of their source regions?[J].Contributions to Mineralogy and Petrology,1991,106(2):129-141.
    [5]Ishihara S.The redox state of granitoids relative to tectonic setting and earth history:the magnetite-ilmenite series 30 years later[J].Earth and Environmental Science Transactions of the Royal Society of Edinburgh,2004,95(1-2):23-33.
    [6]Kelley K A,Cottrell E.Water and the oxidation state of subduction zone magmas[J].Science,2009,325(5940):605-607.
    [7]Lee C T A,Luffi P,Le Roux V,et al.The redox state of arc mantle using Zn/Fe systematics[J].Nature,2010,468(7324):681-685.
    [8]Kelley K A,Cottrell E.The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma[J].Earth and Planetary Science Letters,2012,329-330:109-121.
    [9]Mavrogenes J A,O'Neill H S C.The relative effects of pressure,temperature and oxygen fugacity on the solubility of sulfide in mafic magmas[J].Geochimica et Cosmochimica Acta,1999,63(7-8):1173-1180.
    [10]Mungall J E.Roasting the mantle:slab melting and the genesis of major Au and Au-rich Cu deposits[J].Geology,2002,30(10):915-918.
    [11]Garrido I,Cembrano J,Si1a A,et al.High magma oxidation state and bulk crustal shortening:key factors in the genesis of Andean porphyry copper deposits,central Chile(31-34°S)[J].Revista Geológica de Chile,2002,29(1):43-54.
    [12]Jugo P J.Sulfur content at sulfide saturation in oxidized magmas[J].Geology,2009,37(5):415-418.
    [13]Sun W D,Liang H Y,Ling M X,et al.The link between reduced porphyry copper deposits and oxidized magmas[J].Geochimica et Cosmochimica Acta,2013,103:263-275.
    [14]Richards J P.Discussion of Sun et al.(2013):the link between reduced porphyry copper deposits and oxidized magmas[J].Geochimica et Cosmochimica Acta,2014,126:643-645.
    [15]Sun W D,Huang R F,Li H,et al.Porphyry deposits and oxidized magmas[J].Ore Geology Reviews,2015,65:97-131.
    [16]Ballard J R,Palin J M,Campbell I H.Relative oxidation states of magmas inferred from Ce(IV)/Ce(III)in zircon:application to porphyry copper deposits of northern Chile[J].Contributions to Mineralogy and Petrology,2002,144(3):347-364.
    [17]Trail D,Watson E B,Tailby N D.The oxidation state of Hadean magmas and implications for early Earth’s atmosphere[J].Nature,2011,480(7375):79-82.
    [18]Trail D,Watson E B,Tailby N D.Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas[J].Geochimica et Cosmochimica Acta,2012,97:70-87.
    [19]Qiu J T,Yu X Q,Santosh M,et al.Geochronology and magmatic oxygen fugacity of the Tongcun molybdenum deposit,northwest Zhejiang,SE China[J].Mineralium Deposita,2013,48(5):545-556.
    [20]Li J W,Li Z K,Zhou M F,et al.The Early Cretaceous Yangzhaiyu lode gold deposit,North China Craton:a link between craton reactivation and gold veining[J].Economic Geology,2012,107(1):43-79.
    [21]山西省地质调查院.1∶25万应县幅地质图[M].2001.
    [22]Yuan H L,Gao S,Liu X M,et al.Accurate U-Pb age and trace element determinations of zircon by laser ablationinductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research,2004,28(3):353-370.
    [23]Leake B E,Woolley A R,Arps C E S,et al.Nomenclature of amphiboles:report of the subcommittee on amphiboles of the International Mineralogical Association,commission on new minerals and mineral names[J].The Canadian Mineralogist,1997,35:219-246.
    [24]Foster M D.Interpretation of the composition of trioctahedral micas[R].U.S.Geological Survey Professional Paper 354-B.Washington:United States Government Printing Office,1960:1-49.
    [25]Nachit H,Ibhi A,Abia E H,et al.Discrimination between primary magmatic biotites,reequilibrated biotites and neoformed biotites[J].Comptes Rendus Geoscience,2005,337(16):1415-1420.
    [26]Abdel-Rahman A F M.Nature of biotites from alkaline,Calcalkaline,and peraluminous magmas[J].Journal of Petrology,1994,35(2):525-541.
    [27]Sun S S,Mc Donough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[A].Saunders A D,Norry M J.Magmatism in the Ocean Basins[M].Geological Society,London,Special Publications,1989,42(1):313-345.
    [28]Wones D R,Eugster H P.Stability of biotite:experiment,theory,and application[J].American Mineralogist,1965,50:1228-1272.
    [29]Anderson J L,Barth A P,Wooden J L,et al.Thermometers and thermobarometers in granitic systems[J].Reviews in Mineralogy and Geochemistry,2008,69(1):121-142.
    [30]Anderson J L,Smith D R.The effects of temperature and fO2on the Al-in-hornblende barometer[J].American Mineralogist,1995,80(5-6):549-559.
    [31]Dall’Agnol R,Scaillet B,Pichavant M.An experimental study of a Lower Proterozoic A-type granite from the eastern Amazonian Craton,Brazil[J].Journal of Petrology,1999,40(11):1673-1698.
    [32]Scaillet B,Evans B W.The 15 June 1991 eruption of Mount Pinatubo:I.Phase equilibria and pre-eruption P-T-f O2-f H2O conditions of the dacite magma[J].Journal of Petrology,1999,40(3):381-411.
    [33]Martel C,Pichavant M,Holtz F,et al.Effects of fO2and H2O on andesite phase relations between 2 and 4 kbar[J].Journal of Geophysical Research,1999,104(B12):29453-29470.
    [34]Prouteau G,Scaillet B.Experimental constraints on the origin of the 1991 Pinatubo dacite[J].Journal of Petrology,2003,44(12):2203-2241.
    [35]Bogaerts M,Scaillet B,Auwera J V.Phase equilibria of the Lyngdal granodiorite(Norway):implications for the origin of metaluminous ferroan granitoids[J].Journal of Petrology,2006,47(12):2405-2431.
    [36]Eugster H P,Wones D R.Stability relations of the ferruginous biotite,Annite[J].Journal of Petrology,1962,3(1):82-125.
    [37]Buddington A F,Lindsley D H.Iron-titanium oxide minerals and synthetic equivalents[J].Journal of Petrology,1964,5(2):310-357.
    [38]Carmichael I S E.The iron-titanium oxides of Salic volcanic rocks and their associated ferromagnesian silicates[J].Contributions to Mineralogy and Petrology,1967,14(1):36-64.
    [39]Anderson A T.Oxidation of the La Blache Lake titaniferous magnetite deposit,Québec[J].The Journal of Geology,1968,76(5):528-547.
    [40]Spencer K J,Lindsley D H.A solution model for coexisting iron-titanium oxides[J].American Mineralogist,1981,66(11-12):1189-1201.
    [41]Stormer Jr J C.The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides[J].American Mineralogist,1983,68(5-6):586-594.
    [42]Powell R,Powell M.Geothermometry and oxygen barometry using coexisting iron-titanium oxides:a reappraisal[J].Mineralogical Magazine,1977,41(318):257-263.
    [43]Lindsley D H,Spencer K J.Fe-Ti oxide geothermometry:reducing analyses of coexisting Ti-magnetite(Mt)and ilmenite(Ilm)[A].Abstract AGU 1982 Spring Meeting Eos Transactions[C].Washington DC:American Geophysical Union,1982:471.
    [44]Andersen D J,Lindsley D H.New(and final!)models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer[A].Abstract AGU 1985 Spring Meeting Eos Transactions[C].Washington DC:American Geophysical Union,1985:416.
    [45]Lepage L D.ILMAT:an excel worksheet for ilmenite-magnetite geothermometry and geobarometry[J].Computers&Geosciences,2003,29(5):673-678.
    [46]Ridolfi F,Puerini M,Renzulli A,et al.The magmatic feeding system of El Reventador volcano(Sub-Andean zone,Ecuador)constrained by texture,mineralogy and thermobarometry of the2002 erupted products[J].Journal of Volcanology and Geothermal Research,2008,176(1):94-106.
    [47]Ridolfi F,Renzulli A,Puerini M.Stability and chemical equilibrium of amphibole in calc-alkaline magmas:an overview,new thermobarometric formulations and application to subduction-related volcanoes[J].Contributions to Mineralogy and Petrology,2010,160(1):45-66.
    [48]Zhang J Q,Li S R,Santosh M,et al.Mineral chemistry of high-Mg diorites and skarn in the Han-Xing Iron deposits of South Taihang Mountains,China:Constraints on mineralization process[J].Ore Geology Reviews,2015,64:200-214.
    [49]Watson E B,Wark D A,Thomas J B.Crystallization thermometers for zircon and rutile[J].Contributions to Mineralogy and Petrology,2006,151(4):413-433.
    [50]张聚全.五台山-恒山地区中生代岩浆作用与成矿[D].北京:中国地质大学(北京),2015:1-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700