用户名: 密码: 验证码:
滇西六合正长斑岩中角闪石、黑云母和锆石的特征及其指示意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Amphibole, biotite and zircon characteristics of Liuhe orthophyre in western Yunnan and their implications
  • 作者:周晔 ; 沈阳 ; 侯增谦 ; 谢鑫 ; 罗晨皓
  • 英文作者:ZHOU Ye;SHEN Yang;HOU Zeng-qian;XIE Xin;LUO Chen-hao;China University of Geosciences;Institute of Geology, Chinese Academy of Geological Sciences;No.10 Gold Detachment of PAP;No.12 Gold Detachment of PAP;
  • 关键词:六合正长斑岩 ; 黑云母 ; 角闪石 ; 锆石 ; 氧逸度 ; 含水量
  • 英文关键词:Liuhe orthophyre;;biotite;;amphibole;;zircon;;oxygen fugacity;;water content
  • 中文刊名:YSKW
  • 英文刊名:Acta Petrologica et Mineralogica
  • 机构:中国地质大学;中国地质科学院地质研究所;武警黄金第十支队;武警黄金第十二支队;
  • 出版日期:2018-07-25
  • 出版单位:岩石矿物学杂志
  • 年:2018
  • 期:v.37;No.174
  • 基金:中国地质调查局地质调查项目(DD20160024-07);; 国家重点研发计划项目(2016YFC0600310)~~
  • 语种:中文;
  • 页:YSKW201804003
  • 页数:15
  • CN:04
  • ISSN:11-1966/P
  • 分类号:29-43
摘要
滇西金沙江-哀牢山成矿带发育众多与富碱侵入岩密切相关的斑岩矿床。六合正长斑岩产于该成矿带中段,为贫矿富碱斑岩。在岩相学基础上,对六合正长斑岩中的黑云母、角闪石、锆石进行了矿物学研究,厘定了矿物结晶的温压条件、岩浆氧逸度和含水量等关键要素,并结合全岩地球化学和前人研究成果,讨论了制约滇西富碱斑岩成矿的条件。六合正长斑岩中的黑云母富镁(MgO=12.98%~14.83%)、铝(Al_2O_3=14.18%~16.52%),Fe~(2+)/(Fe~(2+)+Mg)=0.29~0.31,矿物温压计测得黑云母的结晶温度为615~669℃,形成压力为103~165 MPa,形成深度为3~5 km(平均深度为4.2 km)。角闪石富铁(FeO=21.75%~22.21%)、钙(CaO=10.14%~10.49%),属浅闪石质-韭闪石质角闪石,形成温度为817~843℃,形成压力为158~191 MPa,形成深度为5~6 km(平均深度为5.9km)。通过角闪石成分限定岩浆氧逸度(ΔFMQ)为+1.12~+1.27。岩体中的岩浆锆石结晶温度为687~1 098℃,Ce~(4+)/Ce~(3+)=11.18~54.78(平均值<50),δEu=0.14~0.81。正长斑岩中角闪石以斑晶产出,全岩Dy/Yb值与SiO_2含量呈负相关性,La/Yb值与SiO_2含量呈正相关性,且δEu=0.97~1.00,说明六合岩浆在早期结晶大量角闪石,鲜有斜长石分离结晶。以上分析显示六合正长斑岩具有低氧逸度、高含水量的特征。对比斑岩矿床中含矿岩石的矿物学特征,认为六合正长斑岩不具有形成斑岩型矿床的潜力。
        A lot of porphyry deposits, related to potassic intrusions closely, occur in the Jinsha-Ailaoshan metallogenic belt, western Yunnan. Liuhe orthophyre is barren magmatic rock and is located at the center of the belt.Based on petrography, the authors studied mineral characteristics of biotite, amphibole and zircon in Liuhe orthophyre, and investigated mineral temperature-pressure condition, magmatic oxidation state and water content. Depending on geochemical data and previous studies, the authors discussed the constraining condition for mineralization of potassic intrusions. Biotite has high MgO( 12. 98% ~ 14. 83%), CaO( 14. 18% ~ 16. 52%) content, with Fe~(2+)/( Mg + Fe~(2+)) ratios being 0. 29 ~ 0. 31. Mineral thermobarometric calculations show that crystallization temperatures of biotite are 615 ~ 669℃ under the pressure of 103 ~ 165 MPa and at the depth of 3 ~ 5 km( 4. 2 km on average). Amphibole consists dominantly of endenite and pargasite. Crystallization temperatures of amphibole are817 ~ 843℃ under the pressure of 158 ~ 191 MPa and at the depth of 5 ~ 6 km( 5. 9 km on average).Oxygen fugacities( ΔFMQ) of magmas, constrained by chemical composition of amphibole, are + 1. 12 ~ + 1. 27. Crystallization temperatures of magmatic zircons are 687 ~ 1 098℃ and Ce~(4+)/Ce~(3+) ratios are 11. 18 ~ 54. 78( Ce~(4+)/Ce~(3+)<50 on average), δEu = 0. 14 ~ 0. 81( δEu < 1). Liuhe orthophyre has δEu ratios of 0. 97 ~ 1. 00, and whole-rock Dy/Yb ratios have negative relation and La/Yb ratios have positive relation with SiO_2 values, respectively. In addition, amphibole occurs as phenocrysts. These features indicate that a lot of amphibole crystallized at the early stage whereas crystallization of plagioclase was suppressed. The authors hold that Liuhe orthophyre had low oxygen fugacity and high H_2O content. Compared with mineral characteristics of fertile magmas of porphyry deposits, Liuhe orthophyre has no potential to form porphyry deposits.
引文
Ballard J R,Palin J M,Campbell I H,et al.2002.Relative oxidation states of magmas inferred from Ce(IV)/Ce(III)in zircon:Application to porphyry copper deposits of northern Chile[J].Contributions to Mineralogy and Petrology,144(3):347~364.
    Bao Xinshang,He Wenyan,Gao Xue,et al.2017.The Beiya gold deposit:Constraint from water-rich magmas to mineralization[J].Acta Petrologica Sinica,33(7):2 175~2 188(in Chinese with English abstract).
    Brandon A D and Draper D S.1996.Constraints on the origin of the oxidation state of mantle overlying subduction zones:An example from Simcoe,Washington,USA[J].Geochimica et Cosmochimica Acta,60(10):1 739~1 749.
    Burnham A D and Berry A J.2012.An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity[J].Geochimica et Cosmochimica Acta,95:196~212.
    Carroll M R and Rutherford M J.1985.Sulfide and sulfate saturation in hydrous silicate melts[J].Journal of Geophysical Research,90(S02):C601~C612.
    Chung S L,Lee T Y,Lo C H,et al.1997.Intraplate extension prior to continental extrusion along the Ailaoshan-Red River shear zone[J].Geology,25:311~314.
    Chung S L,Lo C H,Lee T Y,et al.1998.Diachronous uplift of the Tibetan plateau starting 40 Myr ago[J].Nature,394:769~773.
    Davidson J,Turner S,Handley H,et al.2007.Amphibole“sponge”in arc crust?[J].Geology,35(9):787~781.
    Deng J,Wang Q F,Li G J,et al.2014.Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region,southwestern China[J].Earth-Science Reviews,138:268~299.
    Deng Jun,Yang Liqiang,Ge Liangsheng,et al.2010.Character and post-ore changes,modifications and preservation of Cenozoic alkalirich porphyry gold metallogenic system in western Yunnan,China[J].Acta Petrologica Sinica,26(6):1 633~1 645(in Chinese with English abstract).
    Ferry J M and Watson E B.2007.New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J].Contributions to Mineralogy and Petrology,154:429~437.
    Gao X Q,He W Y,Gao X,et al.2017,Constraints of magmatic oxidation state on mineralization in the Beiya alkali-rich porphyry gold deposit,western Yunnan,China[J].Solid Earth Sciences,2(3):65~78.
    Griffin W L,Pearson N J,Belousova E,et al.2000.The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J].Geochimica et Cosmochimica Acta,64:133~147.
    Grove T L,Elkins-Tanton L T,Parman S W,et al.2003.Fractional crystallization and mantle melting controls on calcalkaline differentiation trends[J].Contributions to Mineralogy and Petrology,145:515~533.
    Guo Yaoyu,He Wenyan,Li Zaichun,et al.2015.Petrogenesis of Ge’erkuohe porphyry granitoid,western Qinling:Constraints from mineral chemical characteristics of biotites[J].Acta Petrologica Sinica,31(11):3 380~3 390(in Chinese with English abstract).
    Guo Z F,Hertogen J A N,Liu J Q,et al.2005.Potassic ruagmatism in western Sichuan and Yunnan provinces,SE Tibet,China:Petrogical and geochemical constraints on petrogenesis[J].Journal of Petrology,46(1):33~78.
    He W Y,Mo X X,Yang L Q,et al.2016.Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au polymetallic deposit,western Yunnan,China:Implications for magma mixing/mingling and mineralization[J].Gondwana Research,40:230~248.
    Henry D J,Guidotti C V,Thomson J A,et al.2005.The Ti-saturation surface for low-to-medium pressure metapelitic biotites:Implication for geothermometry and Ti-substitution mechanisms[J].American Mineralogist,90(2~3):316~328.
    Hou Z Q,Duan L F,Lu Y J,et al.2015a.Lithospheric architectures of the Lhasa Terrane and its control on ore deposits in Himalayan-Tibetan orogen[J].Economic Geology,110:1 541~1 575.
    Hou Z Q,Ma H W,Za W K,et al.2003.The Yulong porphyry copper belt:Product of large-scale strike-slip faulting in Eastern Tibet[J].Economic Geology,98:125~145.
    Hou Zengqian,Pan Guitang,Wang Anjian,et al.2006.Metallogenesis in Tibetan collisional orogenic belt:II Mineralization in late-collisional transfor mation setting[J].Mineral Deposits,25(5):521~543(in Chinese with English abstract).
    Hou Z Q,Yang Z M,Lu Y J,et al.2015b.A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones[J].Geology,43:247~250.
    Hou Z Q and Zhang H R.2015c.Geodynamics and metallogeny of the eastern Tethyan metallogenic domain[J].Ore Geology Reviews,70:346~384.
    Hou Zengqian,Zheng Yuanchuan,Geng Yuansheng,et al.2015.Metallic refertilization of lithosphere along cratonic edges and its control on Au,Mo and REE ore systems[J].Mineral Deposits,34(4):671~674(in Chinese with English abstract).
    Hou Zengqian,Zhong Dalai,Deng Wanming,et al.2004.A tectonic model for porphyry copper-molybdenum-gold metallogenic belts on the eastern margin of the Qinghai-Tibet Plateau[J].Geology in China,31(1):1~14(in Chinese with English abstract).
    Hou Z,Zhou Y,Wang R,et al.2017.Recycling of metal-fertilized lower continental crust:Origin of non-arc Au-rich porphyry deposits at cratonic edges[J].Geology,45(7):563~566.
    Hu Mingyue,He Hongliao,Zhan Xiuchun,et al.2008.Matrix normalization for In-situ multi-element quantitative analysis of zircon in laser Ablation-Inductively Coupled Plasma Mass Spectrometry[J].Chinese Journal of Analytical Chemistry,36(7):947~953(in Chinese with English abstract).
    Huang X L,Niu Y L,Xu Y G,et al.2010.Mineralogical and geochemical constraints on the petrogenesis of post-collisional potassic and ultrapotassic rocks from western Yunnan,SW China[J].Journal of Petrology,51(8):1 617~1654.
    Jugo P J.2009.Sulfur content at sulfide saturation in oxidized magmas[J].Geology,37(5):415~418.
    Jugo P J,Luth R W,Richards J P,et al.2005.Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts[J].Geochimica et Cosmochimica Acta,69(2):497~503.
    Kay S M and Mpodozis C.2001.Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust[J].GSAToday,11:4~9.
    Kelley K A and Cottrell E.2001.Water and the oxidation state of subduction zone magmas[J].Science,325(5 940):605~607.
    Leak B E,Woolley A R,Arps C E S,et al.1997.Nomenclature of amphiboles:Report of the subcommittee on amphiboles of the international mineralogical association,commission on new minerals and mineral names[J].The Canadian Mineralogist,35:219~246.
    Liu Y,Chen Z,Sun Z Y,et al.2015.Mineralogical and geochemical studies of brecciated ores in the Dalucao REE deposit,Sichuan Province,southwestern China[J].Ore Geology Reviews,70:613~636.
    Lu Y J,Kerrich R,Kemp A I S,et al.2013a.Intracontinental EoceneOligocene porphyry Cu mineral systems of Yunnan,Western Yangtze Craton,China:Compositional characteristics,sources,and implications for continental collision metallogeny[J].Economic Geology,108(7):1 541~1 576.
    Lu Y J,Kerrich R,Mc Cuaig T C,et al.2013b.Geochemical,Sr-NdPb,and zircon Hf-O isotopic compositions of Eocene-Oligocene shoshonitic and potassic adakite-like felsic intrusions in western Yunnan,SW China:Petrogenesis and tectonic implications[J].Journal of Petrology,54(7):1 309~1 348.
    Lu Y J,Mc Cuaig T C,Li Z X,et al.2015.Paleogene post-collisional lamprophyres in western Yunnan,western Yangtze Craton:Mantle source and tectonic implications[J].Lithos,233:139~161.
    Luhr J F.1990.Experimental phase relations of water-and sulfur-saturated arc magmas and the 1982 eruptions of El Chichón volcano[J].Journal of Petrology,31(5):1 071~1 114.
    Mo Xuanxue and Pan Guitang.2006.From the Tethys to the formation of the Qinghai-Tibet Plateau:Constrained by tectono-magmatic events[J].Earth Science Frontiers,13(6):43~51(in Chinese with English abstract).
    Richards J P.2003.Tectono-magmatic precursors for porphyry Cu-(MoAu)deposit formation[J].Economic Geology,98:1 515~1 533.
    Richards J P.2009.Postsubduction porphyry Cu-Au and epithermal Au deposits:Products of remelting of subduction-modified lithosphere[J].Geology,37(3):247~250.
    Richards J P.2011.Magmatic to hydrothermal metal fluxes in convergent and collided margins[J].Ore Geology Reviews,40(1):1~26.
    Richards J P.2015.Tectonic,magmatic,and metallogenic evolution of the Tethyan orogen:From subduction to collision[J].Ore Geology Reviews,70:323~345.
    Richards J P andeng9r A M C.2017.Did Paleo-Tethyan anoxia kill arc magma fertility for porphyry copper formation?[J].Geology,45(7):591~594.
    Ridolfi F,Renzulli A,Puerini M,et al.2010.Stability and chemical equilibrium of amphibole in calc-alkaline magmas:An overview,new thermobarometric formulations and application to subduction-related volcanoes[J].Contributions to Mineralogy and Petrology,160(1):45~66.
    Robb L.2005.Introduction to Ore-Forming Processes[M].Oxford:Blackwell Publishing,1~386.
    Shen Yang,Zheng Yuanchuan,Ma Rui,et al.2018.Mineralogical characteristics of hornblendes and biotites in ore-forming porphyry from Machangqing Cu-Mo deposit and their significances[J].Mineral Deposits(in press)(in Chinese with English abstract).
    Sisson T W and Grove T L.1993.Temperature and H2O contents of low Mg O high-alumina basalts[J].Contributions to Mineralogy and Petrology,113:167~184.
    Sun W D,Arculus J R,Kamenetsky S V,et al.2004.Release of goldbearing fluids in convergent margin magmas prompted by magnetite crystallization[J].Nature,431(7 011):975~978.
    Sun W D,Huang R F,Li H,et al.2015.Porphyry deposits and oxidized magmas[J].Ore Geology Reviews,65:97~131.
    Trail D,Watson E B,Tailby N D,et al.2011.The oxidation state of Hadeanmagmas and implications for early Earth's atmosphere[J].Nature,480:79~82.
    Turner S,Arnaud N,Liu J,et al.1996.Post-collision,shoshonitic volcanism on the Tibetan Plateau:Implications for convective thinning of the lithosphere and the source of ocean island basalts[J].Journal of Petrology,37(1):45~71.
    Uchida E,Endo S,Makino M,et al.2007.Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits[J].Resource Geology,57(1):47~56.
    Wang J H,Yin A,Hamson T M,et al.2001.A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone[J].Earth and Planetary Science Letters,188(1):123~133.
    Wang R,Richards J P,Hou Z Q,et al.2014a.Increased magmatic water content-The key to Oligo-Miocene porphyry Cu-Mo+/-Au formation in the eastern Gangdese Belt,Tibet[J].Economic Geology,109(5):1 315~1 339.
    Wang R,Richards J P,Hou Z Q,et al.2014b.Increasing magmatic oxidation state from Paleocene to Miocene in the eastern Gangdese Belt,Tibet:Implication for collision-related porphyry Cu-Mo+/-Au mineralization[J].Economic Geology,109(7):1 943~1 965.
    Wones D R and Eugster H P.1965.Stability of biotite:Experiment,theory,and application[J].The American Mineralogist,50:1 228~1 272.
    Yang Z M,Lu Y J,Hou Z Q,et al.2015.High-Mg diorite from Qulong in southern Tibet:Implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens[J].Journal of Petrology,56:227~254.
    Yin A and Harrison T M,et al.2000.Geologic evolution of the Himalayan-Tibetan orogeny[A].Jeanloz R,Albee A L and Burke K C[J].Annual Review of Earth and Planetary Sciences,28:211~280.
    Zhang Dehui,Zhang Wenhuai,Xu Guojian,et al.2001.Exsolution and evolution of magmatic hydrothermal fluids and their constraints on the porphyry ore-forming system[J].Earth Science Frontiers,8(3):193~202(in Chinese with English abstract).
    Zhang Yuquan,Xie Yingwen,Tu Guangzhi,et al.1987.Preliminary studies of the alkali-rich intrusive rocks in the Ailaoshan-Jinshajiang belt and their bearing on rift tectonics[J].Acta Petrologica Sinica,1:17~26(in Chinese with English abstract).
    Zhao Xin,Mo Xuanxue,Yu Xuhui,et al.2003.Mineralogical characteristics and petrogenesis of deep-derived xenoliths in Cenozoic syeniteporphyry in Liuhe,western Yunnan Province[J].Earth Science Frontiers,10(3):93~104(in Chinese with English abstract).
    Zheng Qiaoreng.1983.Calculation of the Fe3+and Fe2+contents in silicate and Ti-Fe oxide minerals from EPMA data[J].Acta Mineralogica Sinica,1:55~62(in Chinese with English abstract).
    Zhou Ye,Hou Zengqian,Zheng Yuanchuan,et al.2017.Granulite xenoliths in Liuhe area:Evidence for composition and genetic mechanism of the lower crust from the Neoproterozoic to Cenozoic[J].Acta Petrologica Sinica,33(7):2 143~2 160(in Chinese with English abstract).
    鲍新尚,和文言,高雪,等.2017.滇西北衙金矿床富水岩浆对成矿的制约[J].岩石学报,33(7):2 175~2 188.
    邓军,杨立强,葛良胜,等.2010.滇西富碱斑岩型金成矿系统特征与变化保存[J].岩石学报,26(6):1 633~1 645.
    郭耀宇,和文言,李在春,等.2015.西秦岭格尔括合花岗闪长斑岩岩石成因:黑云母矿物学特征约束[J].岩石学报,31(11):3 380~3 390.
    侯增谦,潘桂棠,王安建,等.2006.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成矿作用[J].矿床地质,25(5):521~543.
    侯增谦,郑远川,耿元生,等.2015.克拉通边缘岩石圈金属再富集与金-钼-稀土元素成矿作用[J].矿床地质,34(4):671~674.
    侯增谦,钟大赉,邓万明,等.2004.青藏高原东缘斑岩铜钼金成矿带的构造模式[J].中国地质,31(1):1~14.
    胡明月,何红蓼,詹秀春,等.2008.基体归一定量技术在激光烧蚀等离子体质谱法锆石原位多元素分析中的应用[J].分析化学研究报告,36(7):947~953.
    莫宣学,潘桂棠,等.2006.从特提斯到青藏高原形成:构造-岩浆事件的约束[J].地学前缘,13(6):43~51.
    沈阳,郑远川,马睿,等.2018.云南马厂箐斑岩矿床成矿岩体内角闪石和黑云母矿物学特征及其指示意义[J].矿床地质(待刊).
    张德会,张文淮,许国建.2001.岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约[J].地学前缘,8(3):193~202.
    张玉泉,谢应雯,涂光炽,等.1987.哀牢山-金沙江富碱侵入岩及其与裂谷构造关系初步研究[J].岩石学报,4(1):17~25.
    赵欣,莫宣学,喻学惠,等.2003.滇西六合地区新生代正长斑岩中深源包体的矿物学特征与成因意义[J].地学前缘,10(3):93~104.
    郑巧荣.1983.由电子探针分析值计算Fe3+和Fe2+[J].矿物学报,1:55~62.
    周晔,侯增谦,郑远川,等.2017.六合地区新元古代-新生代下地壳的成分与形成机制:来自麻粒岩包体的证据[J].岩石学报,33(7):2 143~2 160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700