用户名: 密码: 验证码:
应用高频观测探讨不同森林经营方式下矿质土壤呼吸的昼夜动态特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-frequency analysis of the diel patterns of mineral soil respiration under different forest management
  • 作者:郑永 ; 刘小飞 ; 郑蔚 ; 周嘉聪 ; 苏瑞兰 ; 林伟盛 ; 熊德成 ; 胥超 ; 陈岳民 ; 杨玉盛
  • 英文作者:ZHENG Yong;LIU Xiaofei;ZHENG Wei;ZHOU Jiacong;SU Ruilan;LIN Weisheng;XIONG Decheng;XUchao;CHEN Yuehmin;YANG Yusheng;School of Geographical Science,Fujian Normal University;State Key Laboratory of Subtropical Mountain Ecology ( Founded by Ministry of Science and Technology and Fujian Province) ,Fujian Normal University;Sanyuan District Forestry Bureau of Sanming;
  • 关键词:不同森林经营方式 ; 高频自动观测 ; 矿质土壤呼吸 ; 昼夜动态 ; 碳通量
  • 英文关键词:different forest management;;high frequency automatic observation;;mineral soil respiration;;diurnal patterns;;carbon flux
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:福建师范大学地理科学学院;福建师范大学湿润亚热带山地生态国家重点实验室培育基地;三明市三元区林业局;
  • 出版日期:2017-01-08
  • 出版单位:生态学报
  • 年:2017
  • 期:v.37
  • 基金:国家自然科学基金重点资助项目(31130013);国家自然科学基金资助项目(31500407);; 福建省教育厅B类科技资助项目(JB14025)
  • 语种:中文;
  • 页:STXB201701010
  • 页数:9
  • CN:01
  • ISSN:11-2031/Q
  • 分类号:98-106
摘要
矿质土壤呼吸是森林生态系统土壤碳库损失的重要途径之一,也是森林生态系统碳(C)平衡估算中的关键因子。了解矿质土壤呼吸在不同时间尺度上的变化,对理解森林生态系统C循环应对全球变化的响应至关重要,而高频观测是探讨矿质土壤呼吸在不同时间尺度变化的重要手段之一。通过高频自动观测系统与Li-8100土壤CO2通量测量系统,对福建省三明市陈大镇国有林场的米槠(Castanopsis carlesii)次生林在不同森林经营方式下(CK对照,RR皆伐,RB火烧)的矿质土壤呼吸与土壤温度和含水量的昼夜动态进行分析,并比较2种采样策略下矿质土壤呼吸的年、日均通量差异。结果表明:1)不同森林经营方式的矿质土壤呼吸与土壤温度和土壤含水量均存在着明显的季节动态,矿质土壤呼吸速率年均值表现为CK(2.18μmol m~(-2)s~(-1))>RB(1.93μmol m~(-2)s~(-1))>RR(1.89μmol m~(-2)s~(-1))。2)在不同森林经营方式下,采用手动观测的矿质土壤呼吸年平均日通量显著低于高频观测结果,而采用高频观测09:00—11:00时间段内观测数据计算日通量与高频自动观测系统全天(24h)结果无显著差异;3)不同森林经营方式下的林地,土壤水热条件的变化是影响矿质土壤呼吸的重要因素之一。双因子模型拟合结果表明,土壤温度和含水量共同解释了CK、RR和RB矿质土壤呼吸速率的年变化的96.8%,62.8%,95.4%,拟合结果明显优于以温度为单因子的指数模型。因此,未来气候变化背景下,为准确评估和预测不同森林经营方式对土壤与大气间碳通量交换的影响,采用高频自动观测技术观测矿质土壤呼吸,将有利于提高碳通量估算精度。
        Mineral soil respiration is an important route for the loss soil carbon( C) in forest ecosystems,and it is a key factor for estimating the forest ecosystem carbon balance. Making sense of mineral soil respiration variation on temporal andspatial scales is a critical component of understanding forest ecosystem C cycle responses to climate change. Thus,highfrequency measurements have become one of the primary tools used to measure mineral soil respiration on both temporal and spatial scales. The objective of this study was to compare a manual system( Li-8100A) with an automated system for measuring mineral soil respiration in a subtropical forest. We carried out the study in a secondary Castanopsis carlesii forest with different forest management( Control,CK; Residual retention after clear cutting,RR; Residual burning after clear cutting,RB) in Sanming,Fujian. The results obtained were as follows.( 1) The mineral soil respiration flux,soil temperature,and soil moisture content under different forest managements all showed obvious seasonal dynamics,and mineral soil respiration rates were in the order of CK( 2.18 μmol m~(-2)s~(-1)) > RB( 1.93 μmol m~(-2)s~(-1)) > RR( 1.89 μmol m~(-2)s~(-1)).( 2) The annual flux determined using high-frequency measurement was significantly higher than that determined using the manual system,whereas there was no difference between the soil respiration rate calculated between 09: 00 and11: 00( high-frequency data) for different forest managements.( 3) Soil hydrothermal condition is one of the important factors affecting mineral soil respiration under different forest management. A two-factor model show that included soil temperature and moisture explained the annual variation of mineral soil respiration rate as 96. 8%,62. 8% and 95. 4% in CK,RR,and RB treatments,respectively. The double factors model demonstrated that combined with soil temperature and moisture was explained the annual variation of mineral soil respiration rate 96.8%,62.8% and 95.4% in CK,RR and RB,respectively. The results obtained using this model were better than those obtained using a single-factor model. Therefore,in order to accurately assess and predict the effects of different forest management on the C flux exchange between the soil and atmosphere under future climate change,high-frequency measurements should be considered.
引文
[1]Tarnocai C,Canadell J G,Schuur E A G,Kuhry P,Mazhitova G,Zimov S.Soil organic carbon pools in the northern circumpolar permafrost region.Global Biogeochemical Cycles,2009,23(2):GB2023.
    [2]Liang N S,Inoue G,Fujinuma Y.A multichannel automated chamber system for continuous measurement of forest soil CO2efflux.Tree Physiology,2003,23(12):825-832.
    [3]Savage K E,Davidson E A.A comparison of manual and automated systems for soil CO2flux measurements:trade-offs between spatial and temporal resolution.Journal of Experimental Botany,2003,54(384):891-899.
    [4]Wang H,Mc Conkey B,Curtin D,Cutforth H.Estimation of daily soil CO2flux using a single-time-point measurement.Canadian Journal of Soil Science,2010,90(3):517-522.
    [5]Liu Q,Edwards N T,Post W M,Gu L,Ledford J,Lenhart S.Temperature-independent diel variation in soil respiration observed from a temperate deciduous forest.Global Change Biology,2006,12(11):2136-2145.
    [6]Carbone M S,Vargas R.Automated soil respiration measurements:new information,opportunities and challenges.The New Phytologist,2008,177(2):295-297.
    [7]Decina S M,Hutyra L R,Gately C K,Getson J M,Reinmann A B,Gianotti A G S,Templer P H.Soil respiration contributes substantially to urban carbon fluxes in the greater Boston area.Environmental Pollution,2016,212:433-439.
    [8]Bond-Lamberty B,Thomson A.Temperature-associated increases in the global soil respiration record.Nature,2010,464(7288):579-582.
    [9]Savage K,Davidson E A,Tang J.Diel patterns of autotrophic and heterotrophic respiration among phenological stages.Global Change Biology,2013,19(4):1151-1159.
    [10]Sayer E J,Tanner E V J.2010.A new approach to trenching experiments for measuring root-rhizosphere respiration in a lowland tropical forest.Soil Biology and Biochemistry,42(2):347-352.
    [11]Cusack D F,Torn M S,Mc Dowell W H,SILVER W L.The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils.Global Change Biolog,2010,16(9):2555-2572.
    [12]Craine J M,Gelderman T M.Soil moisture controls on temperature sensitivity of soil organic carbon decomposition for a mesic grassland.Soil Biology and Biochemistry,2011,43(2):455-457.
    [13]Wang G B,Zhou Y,Xu X,Ruan H H,Wang J S.Temperature sensitivity of soil organic carbon mineralization along an elevation gradient in the Wuyi Mountains,China.PLo S One,2013,8(1):e53914.
    [14]杨玉盛,董彬,谢锦升,陈光水,高人,李灵,王小国,郭剑芬.森林土壤呼吸及其对全球变化的响应.生态学报,2004,24(3):583-591.
    [15]Davidson E A,Samanta S,Caramori S S,Savage K.The dual Arrhenius and Michaelis–Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales.Global Change Biology,2012,18(1):371-384.
    [16]Page K L,Dalal R C,Raison R J.The impact of harvesting native forests on vegetation and soil C stocks,and soil CO2,N2O and CH4fluxes.Australian Journal of Botany,2011,59(7):654-669.
    [17]Elliott K J,Vose J M.Initial effects of prescribed fire on quality of soil solution and streamwater in the southern Appalachian mountains.Southern Journal of Applied Forestry,2005,29(1):5-15.
    [18]Kulmala L,Aaltonen H,Berninger F,Kieloahoc A J,Levulad J,Bckb J,Harib P,Kolarib P,Korhonenb J F J,Kulmalac M,Nikinmaab E,Pihlatiec M,Vesalac T,Pumpanen J.Changes in biogeochemistry and carbon fluxes in a boreal forest after the clear-cutting and partial burning of slash.Agricultural and Forest Meteorology,2014,188:33-44.
    [19]Kuzyakov Y.Sources of CO2efflux from soil and review of partitioning methods.Soil Biology and Biochemistry,2006,38(3):425-448.
    [20]Sheng H,Yang Y S,Yang Z J,Chen G S,Xie J S,Guo J F,Zou S Q.The dynamic response of soil respiration to land-use changes in subtropical China.Global Change Biology,2010,16(3):1107-1121.
    [21]Zhao J,Qi Y C,Dong Y S.Diurnal and seasonal dynamics of soil respiration in desert shrubland of Artemisia Ordosica on Ordos plateau of inner Mongolia,China.Journal of Forestry Research,2007,18(3):231-235.
    [22]Wang M,Liu X T,Zhang J T,Li X J,Wang G D,Li X Y,Lu X R.Diurnal and seasonal dynamics of soil respiration at temperate Leymus chinensis meadow steppes in western Songnen plain,China.Chinese Geographical Science,2014,24(3):287-296.
    [23]Shi W Y,Zhang J G,Yan M J,Guan J H,Du S.Diurnal and seasonal dynamics of soil respiration in a Platycladus orientalis forest stand on the semiarid Loess Plateau,China.Journal of Earth Environment,2012,3(6):1144-1148.
    [24]Savage K,Phillips R,Davidson E.High temporal frequency measurements of greenhouse gas emissions from soils.Biogeosciences Discussions,2013,10(11):18277-18308.
    [25]Vargas R,Baldocchi D D,Allen M F,Bahn M,Black T A,Collins S L,Yuste J C,Hirano T,Jassal R S,Pumpanen J,Tang J W.Looking deeper into the soil:biophysical controls and seasonal lags of soil CO2production and efflux.Ecological Applications,2010,20(6):1569-1582.
    [26]Phillips C L,Nickerson N,Risk D,Bond B J.Interpreting diel hysteresis between soil respiration and temperature.Global Change Biology,2011,17(1):515-527.
    [27]Vargas R,Allen M F.Diel patterns of soil respiration in a tropical forest after Hurricane Wilma.Journal of Geophysical Research:Biogeosciences,2008,113(G3):G03021.
    [28]Barron-Gafford G A,Scott R L,Jenerette G D,Huxman T E.The relative controls of temperature,soil moisture,and plant functional group on soil CO2efflux at diel,seasonal,and annual scales.Journal of Geophysical Research:Biogeosciences,2011,116(G1):G01023.
    [29]Savage K,Davidson E A,Richardson A D.A conceptual and practical approach to data quality and analysis procedures for high-frequency soil respiration measurements.Functional Ecology,2008,22(6):1000-1007.
    [30]蒋延玲,周广胜,赵敏,王旭,曹铭昌.长白山阔叶红松林生态系统土壤呼吸作用研究.植物生态学报,2005,29(3):411-414.
    [31]Shi X H,Zhang X P,Yang X M,Mc Laughlin N B,Liang A Z,Fan R Q.An appropriate time-window for measuring soil CO2efflux:a case study on a Black soil in north-east China.Acta Agriculturae Scandinavica,Section B-Soil&Plant Science,2012,62(5):449-454.
    [32]Wang Y D,Wang H M,Wang Z L,Zhang W J,Guo C C,Wen X F,Liu Y F.Optimizing manual sampling schedule for estimating annual soil CO2efflux in a young exotic pine plantation in subtropical China.European Journal of Soil Biology,2012,52:41-47.
    [33]Tang X L,Liu S G,Zhou G Y,Zhang D Q,Zhou C Y.Soil-atmospheric exchange of CO2,CH4,and N2O in three subtropical forest ecosystems in southern China.Global Change Biology,2006,12(3):546-560.
    [34]Wang W,Peng S S,Wang T,Fang J Y.Winter soil CO2efflux and its contribution to annual soil respiration in different ecosystems of a foreststeppe ecotone,north China.Soil Biology and Biochemistry,2010,42(3):451-458.
    [35]Heinemeyer A,Di Bene C,Lloyd A R,Tortorella D,Baxter R,Huntley B,Gelsomino A,Ineson P.Soil respiration:implications of the plant-soil continuum and respiration chamber collar-insertion depth on measurement and modelling of soil CO2efflux rates in three ecosystems.European Journal of Soil Science,2011,62(1):82-94.
    [36]Olajuyigbe S,Tobin B,Saunders M,Nieuwenhuis M.Forest thinning and soil respiration in a Sitka spruce forest in Ireland.Agricultural and Forest Meteorology,2012,157:86-95.
    [37]Karhu K,Fritze H,Tuomi M,Vanhala P,Spetz P,Kitunen V,Liski J.Temperature sensitivity of organic matter decomposition in two boreal forest soil profiles.Soil Biology and Biochemistry,2010,42(1):72-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700