用户名: 密码: 验证码:
As_2S_3硫系玻璃光纤弯曲特性及其对损耗的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bending Characteristics of As_2S_3 Chalcogenide Glass Fibers and Its Effect on Loss
  • 作者:江丽 ; 戴世勋 ; 刘永兴 ; 王训四 ; 楼慈波
  • 英文作者:JIANG Li;DAI Shixun;LIU Yongxing;WANG Xunsi;LOU Cibo;Faculty of Science,Ningbo University;Laboratory of Infrared Material and Devices,Advanced Technology Research Institute,Ningbo University;
  • 关键词:硫系玻璃 ; 硫化砷光纤 ; 弯曲强度 ; 弯曲损耗
  • 英文关键词:chalcogenide glass;;arsenic sulfide fiber;;bending strength;;bending loss
  • 中文刊名:GXYB
  • 英文刊名:Journal of the Chinese Ceramic Society
  • 机构:宁波大学理学院;宁波大学高等技术研究院红外材料及器件实验室;
  • 出版日期:2018-12-12 15:09
  • 出版单位:硅酸盐学报
  • 年:2019
  • 期:v.47;No.359
  • 基金:国家自然科学基金(61875094,61435009);; 宁波大学王宽诚幸福基金
  • 语种:中文;
  • 页:GXYB201902015
  • 页数:5
  • CN:02
  • ISSN:11-2310/TQ
  • 分类号:104-108
摘要
采用改进的挤压法制备了两种不同直径的多模As_2S_3硫系光纤,测量了光纤的损耗;采用自行搭建的光纤弯曲强度机械测量装置研究了光纤的弯曲特性,测量了不同弯曲半径下光纤的红外透过光谱,分析了在4.7mm波长下弯曲损耗与弯曲半径及光纤直径之间的关系。结果表明:拉制的直径为170mm和250mm的As_2S_3光纤最低损耗分别为1.01 dB/m和1.35 dB/m,其平均弯曲强度分别为224.9 MPa和172.4 MPa。光纤红外透过率随弯曲半径减小而呈现逐步下降的趋势,当两种光纤分别弯曲到半径为10 mm和30 mm左右时损耗急剧增加,弯曲半径的断裂极限分别为8.08 mm和22.62 mm。
        Two multimode As_2S_3 chalcogenide fibers with different diameters were prepared by an improved extrusion method, and the corresponding transmission losses of fibers were measured. The bending characteristics of As_2S_3 fibers were investigated by a bending strength measurement platform. The infrared transmission spectra were measured at different bending radii. Also, the relationships between bending loss and bending radius as well as fiber diameter were analyzed at a wavelength of 4.7 μm. Two As_2S_3 fibers with the diameters of 170 μm and 250 μm have the minimum losses of 1.01 d B/m and 1.35 d B/m, and the average bending strength are 224.9 MPa and 172.4 MPa, respectively. The infrared transmission rate of fibers decreases with decreasing the bending radius. The fiber transmission losses increase sharply, and the fracture limits of bending radius for these two fibers are 8.08 mm and22.62 mm, respectively, when the bending radius reduces to 10 mm and 30 mm.
引文
[1]WANG Y,DAI S,PENG X,et al.A review of Mid-Infrared supercontinuum generation in chalcogenide glass fibers[J].Appl Sci,2018,8(5):707.
    [2]SAINI T S,BAILI A,KUMAR A,et al.Design and analysis of equiangular spiral photonic crystal fiber for mid-infrared supercontinuum generation[J].J Mod Opt,2015,62(19):1570-1576.
    [3]PETERSEN C R,M?LLER U,KUBAT I,et al.Mid-infrared supercontinuum covering the 1.4-13.3?m molecular fingerprint region using ultra-high NA chalcogenide step-index fiber[J].Nat Photon,2014,8(11):830-834.
    [4]BERNIER M,FORTIN V,CAEON N,et al.Mid-infrared chalcogenide glass Raman fiber laser[J].Opt Lett,2013,38(2):127-129.
    [5]TUNIZ A,EGGLETON B J,XIONG C,et al.Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber[J].Appl Opt,2009,48(29):5467-5474.
    [6]徐航,戴世勋,张培晴,等.硫系拉曼光纤激光器研究进展[J].激光与光电子学进展,2016,53(3):17-29.XU Hang,DAI Shixun,Zhang Peiqing,et al.Las Optoelect Prog(in Chinese),2016,53(3):17-29.
    [7]VALIUNAS J K.Tunable high-power fiber laser and its application to produce Brillouin fiber lasers[D].Canada:Lakehead University,2011.
    [8]任玉荣.用受激布里渊散射在光纤中实现光存储的研究[D].北京:北京化工大学,2009.REN Yurong.Research on optical storage using stimulated brillouin scattering in optical fiber(in Chinese dissertation).Beijing:Beijing University of Chemical Technology,2009.
    [9]BUREAU B,MAURUGEON S A,CHARPENTIER F,et al.Chalcogenide glass fibers for infrared sensing and space optics[J].Fiber Integrated Opt,2009,28(1):65-80.
    [10]KEIRSSE J,BOUSSARD C,LOREAL O,et al.IR optical fiber sensor for biomedical applications[J].Vib Spectrosc,2003,32(1):23-32.
    [11]尹冬梅,戴世勋,王训四,等.红外硫系玻璃光纤在传感领域的研究进展[J].激光与光电子学进展,2013,50(2):92-99.YING Dongmei,DAI Shixun,WANG Xunsi,et al.Las Optoelect Prog(in Chinese),2013,50(2):92-99.
    [12]MCENROE D J,FINNEY M J,PRIDEAUX P H,et al.Optical and Mechanical Properties of Chalcogenide Fibers[C]//Infrared Optical Materials and Fibers,Cambridge,CA,USA,1987:62-68.
    [13]DIANOV E M,KRASTEVA V M,PLOTNICHENKO V G,et al.Mechanical properties of chalcogenide glass optical fibers[C]//Infrared Fiber Optics II,Los Angeles,CA,USA,1990:181-182.
    [14]CHURBANOV M F,SHIRYAEV V S,GERASIMENKO V V,et al.Stability of the optical and mechanical properties of chalcogenide fibers[J].Inorg Mater,2002,38(10):1063-1068.
    [15]GATTASS R R,KUNG F H,BUSSE L E,et al.Bend loss in multimode chalcogenide fiber at infrared wavelengths[J].Opt Eng,2014,53(1):105021-105023.
    [16]刘硕,唐俊州,刘自军,等.低损耗硫系玻璃光纤的挤压制备及其性能研究[J].光学学报,2016,36(10):39-46.LIU Shuo,TANG Junzhou,LIU Zijun,et al.Acta Opt Sin(in Chinese),2016,36(10):39-46.
    [17]SUN Y,DAI S,ZHANG P,et al.Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures[J].Opt Express,2015,23(18):23472-23483.
    [18]MATTHEWSON M J,KURKJIAN C R,GULATI S T.Strength measurement of optical fibers by bending[J].J Am Ceram Soc,2010,69(11):815-821.
    [19]SWILER D R,VARSHNEYA A K,PRIDEAUX P H.Strength of Ge-Sb-Se Chalcogenide Glass Fibers[C]//Optical Fiber Materials and Properties,Boston,MA,USA,1986:183-190.
    [20]傅光辉,金宗哲.脆性材料强度的Weibull统计[J].硅酸盐通报,1986(2):33-38.FU Guanghui,JIN Zongzhe.Bull Chin Ceram Soc(in Chinese),1986(2):33-38.
    [21]WEIBULL W.A statistical theory of the strength of materials[J].P Am Math Soc,1939,151(5):1034-1034.
    [22]沙洪涛.利用Matlab估算光纤强度的Weibull参数[J].光纤与电缆及其应用技术,2013(2):33-36.SHA Hongtao.Opt Fiber Electric Cable Appl(in Chinese),2013(2):33-36.
    [23]张秀芝.Weibull分布参数估计方法及其应用[J].气象学报,1996,54(1):108-116.ZHANG Xiuzhi.Acta Meteorol Sin(in Chinese),1996,54(1):108-116.
    [24]金宗哲,马眷荣,汪林生.脆性材料强度统计分析中Weibull模数估计的试样数量的优化[J].硅酸盐学报,1989,17(3):229-434.JIN Zongzhe,MA Juanrong,WANG Linsheng,et al.J Chin Ceram Soc,1989,17(3):229-434.
    [25]GLOGE D.Bending loss in multimode fibers with graded and ungraded core index[J].Appl Opt,1972,11(11):2506-2513.
    [26]徐世祥,李锡善,张国轩.纯石英光纤的弯曲传输特性实验研究[J].中国激光,1994,21(7):571-575.XIU Shixiang,LI Xishan,ZHANG Guoxuan,et al.Chin J Laser(in Chinese),1994,21(7):571-575.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700