用户名: 密码: 验证码:
基于切削力实时测量的弱刚性件加工变形控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Deformation control in weak rigidity workpiece milling based on real-time cutting force measuring
  • 作者:王庆霞 ; 胡晓伟 ; 庞静珠 ; 吴重军 ; 侯春杰
  • 英文作者:Wang Qingxia;Hu Xiaowei;Pang Jingzhu;Wu Chongjun;Hou Chunjie;School of Mechanical Engineering,Donghua University;Shanghai Aerospace Equipment Manufacture Factory;Shanghai Aerospace Technology and Equipment Engineering Technology Research Center;
  • 关键词:实时切削力 ; 进给速度调整 ; 加工变形 ; 在线控制
  • 英文关键词:real-time cutting force;;feed rate adjustment;;cutting deformation;;on-line control
  • 中文刊名:YQXB
  • 英文刊名:Chinese Journal of Scientific Instrument
  • 机构:东华大学机械工程学院;上海航天设备制造总厂有限公司;上海航天工艺与装备工程技术研究中心;
  • 出版日期:2019-02-15
  • 出版单位:仪器仪表学报
  • 年:2019
  • 期:v.40
  • 基金:国家科技重大专项(2017ZX04005001)资助
  • 语种:中文;
  • 页:YQXB201902026
  • 页数:10
  • CN:02
  • ISSN:11-2179/TH
  • 分类号:226-235
摘要
针对整体多框弱刚性件切削易变形之问题,提出了基于切削力实时测量的进给速度实时调整方法。根据铣削变形仿真数据建立了加工过程中进给速度、切削力与工件最大变形之间的非线性数值模型,并通过非线性求根算法求解最大变形和切削力约束下的进给速度最优解,并在开放式数控系统中开发了相应的控制模块。利用所开发的无线轴式测力装置和控制模块开展了铝合金薄壁框切削变形控制实验,结果说明数值模型预测精度在90%以上,实施进给速度优化功能优化后,切削力和工件最大变形分别降低23%和12.3%左右。实验结果表明,经过切削力实时约束和弱刚性件加工进给速度自适应调整,可将薄壁框件侧壁变形控制在规定范围内。
        To improve the cutting deformation of the weak rigid multi-frame workpieces, the real-time adjustment of feedrate based on the real-time cutting force measurement is proposed. According to the milling finite element simulation, one kind of nonlinear numerical model with feed speed, cutting force and the maximum deformation of workpiece is formulated. The optimal feedrate under maximum deformation and cutting force are achieved. Meanwhile, the control module is developed in the open numerical control system. The cutting experiments of aluminum alloy thin wall frame are carried out by using the developed wireless force measuring device and control module. Experimental results show that prediction accuracy of the numerical model is over 90%. The cutting force and maximum deformation of workpiece are reduced around 23% and 12.3%, respectively. Experimental results show that deformation of the thin-walled frames can be effectively controlled within specified range by the real-time cutting force constraint and feedrate adaptive adjustment.
引文
[1] LAYEGH K, HUSEYIN E, ISMAIL L. Offline force control and feedrate scheduling for complex free form surfaces in 5-Axis milling [C]. The 5th CIRP Conference on High Performance Cutting, 2012: 96-101.
    [2] YI W, JIANG Z L, SHAO W X, et al. Error compensation of thin plate-shape part with pre-bending method in mace milling [J]. Chinese Journal of Mechanical Engineering, 2015, 28(1): 88-95.
    [3] 林震宇,刘庆华,黄官平,等.大型铝合金机翼整体壁板加工变形控制技术[J].航空制造技术,2013(1-2):146-149.LIN ZH Y, LIU Q H, HUANG G P, et al. Deformation control technology of integral pannel for large aluminium alloy wing [J]. Aeronautical Manufacturing Technology, 2013(1-2): 146-149.
    [4] RATCHEV S, LIU S, HUANG W, et al. An advanced FEA based force induced error compensation strategy in milling [J]. International Journal of Machine Tools & Manufacture, 2006, 46(5): 542- 551.
    [5] 侯尧华,张定华,张莹.薄壁件加工误差补偿建模与学习控制方法[J].机械工程学报,2018,54(17):108-115.HOU Y H, ZHANG D H, ZHANG Y. Modeling and learning control methods for machining error compensation of thin-walled parts [J]. Journal of Mechanical Engineering, 2018, 54(17): 108-115.
    [6] CHEN W F, XUE J B, TANG D B, et al. Deformation prediction and error compensation in multilayer milling processes for thin-walled parts [J]. International Journal of Machine Tools and Manufacture, 2009, 49(11): 859- 864.
    [7] HUANG Y L, YUAN J T. High speed constant force milling based on fuzzy controller and BP neural network [J]. International Journal of Control and Automation, 2014, 7(5): 143-152.
    [8] 杨建华,张定华,吴宝海.考虑加工过程的复杂薄壁件加工综合误差补偿方法[J].航空学报,2014,35(11):3174-3180.YANG J H, ZHANG D H, WU B H. A comprehensive error compensation approach considering machining process for complex thin-wall parts machining [J]. Acta Aeronautica ET Astronautica Sinica, 2014, 35(11): 3174-3180.
    [9] 高鑫,李迎光,刘长青,等.基于CAM/CNC集成的航空大型薄壁件数控加工在机刀轨调整方法[J].航空学报,2015,36(12):3980-3990.GAO X, LI Y G, LIU CH Q, et al. An adjusting method of tool path on machine for NC manufacture of large thin-walled eronautical part [J]. Acta Aeronauticaet Astronautic Sinica, 2015, 36(12): 3980-3989.
    [10] 黄晓明.铝合金航空整体结构件加工变形机理与预测研究[D] .济南:山东大学,2015.HUANG X M. Deformation mechanism and prediction of aluminum alloy monolithic component in the milling [D]. Jinan: Shandong University, 2015.
    [11] 廖凯,张萧笛,车兴飞,等.铝合金薄壁件加工变形的力学模型构建与分析[J].哈尔滨工业大学学报,2018,50(5):166-172.LIAO K, ZHANG X D, CHE X F, et al. Construction and analysis of mechanical model for processing deformation of thin-walled aluminum alloy parts [J]. Journal of Harbin University of Technology, 2018, 50(5): 166-172.
    [12] ZUPEL U, CUS F, REIBENSCHUH M. Modeling and adaptive force control of milling by using artificial techniques [J]. Journal of Intelligent Manufacturing, 2012, 23(5): 1805-1815.
    [13] SAIKUMAR S, SHUNMUGAM M S. Development of a feedrate adaption control system for high-speed rough and finish end-milling of hardened EN24 steel [J]. International Journal of Advanced Manufacturing Technology, 2012, 59(9-12): 869- 884.
    [14] HU P, HAN ZH Y, FU H Y, et al. Architecture and implementation of closed-loop machining system based on open STEP-NC controller [J]. International Journal of Advanced Manufacturing Technology, 2016, 83(5- 8): 1361-1375.
    [15] GAO Y Y, MA J W, JIA Z Y, et al. Tool path planning and machining deformation compensation in high-speed milling for difficult-to-machine material thin-walled parts with curved surface [J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(9-12): 1757-1767.
    [16] RIDAN F, XU X, LIU G G. A framework for machining optimization based on STEP-NC [J]. International Journal of Advanced Manufacturing Technology, 2012, 23(3): 423- 441.
    [17] 朱坚民,王健,张统超,等.基于刀具振动位移的动态铣削力测量方法[J].仪器仪表学报,2014,35(12):2771- 2782.ZHU J M, WANG J, ZHANG T CH, et al. Dynamic milling force measuring method based on cutting tool vibration displacement[J].Chinese Journal of Scientific Instrument, 2014, 35(12): 2771- 2782.
    [18] 杨毅青,张斌,刘强.铣削建模中多种切削力模型的分析比较[J].振动工程学报,2015,28(1):82-90.YANG Y Q, ZHANG B, LIU Q. Analysis and comparison of various cutting force models in milling modeling [J]. Journal of Vibration Engineering, 2015, 28(1): 82-90.
    [19] 黄晓明,孙杰,李剑峰.基于刚度与应力演变机制的航空整体结构件加工变形预测理论建模[J].机械工程学报,2017,53(9):201- 208.HUANG X M, SUN J, LI J F. Mathematical modeling of aeronautical monolithic component machining distortion based on stiffness and residual stress evolvement [J]. Journal of Mechanical Engineering, 2017, 53(9): 201- 208.
    [20] SCHEFFEL J,HAKANSSON C.Solution of systems of nonlinear equations-a semi-implicit approach [J]. Applied Numerical Mathematics, 2009, 59(10): 2430- 2441.
    [21] 赵玉龙,李莹雪,费继友,等.固定式三向铣削测力仪的研究[J].振动、测试与诊断,2017,37(4):641- 647,835.ZHAO Y L, LI Y X, FEI J Y, et al. Research on fixed three-way milling dynamometer [J]. Vibration, Test and Diagnosis, 2017, 37(4): 641- 647,835.
    [22] TOTIS G, WIRTZ G, SORTINO M, et al. Development of a dynamometer for measuring individual cutting edge forces in face milling [J]. Mechanical Systems and Signal Processing, 2010, 24(6): 1844-1857.
    [23] 刘明尧,陈功,张志建,等.主轴集成式光纤光栅切削力测量方法研究[J].仪器仪表学报,2016,37(6):1248-1257.LIU M Y, CHEN G, ZHANG ZH J, et al. Research on spindle integrated cutting force measurement method based on fiber Bragg grating [J]. Chinese Journal of Scientific Instrument, 2016, 37(6): 1248-1257.
    [24] 刘明尧,邴俊俊,周伟剑,等.基于光纤光栅的三维铣削力测量方法研究[J].仪器仪表学报,2018,39(1):49- 57.LIU M Y, PIAO J J, ZHOU W J, et al. Research on measurement method of three dimensional milling force based on fiber grating [J]. Chinese Journal of Scientific Instrument, 2018, 39(1): 49- 57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700