用户名: 密码: 验证码:
高能微波辐照合成类石墨烯氮化碳纳米片的结构特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structural feature of graphene-like graphitic carbon nitride nanosheets synthesized via high-energy microwave irradiation
  • 作者:邹婧叶 ; 余永志 ; 顾永攀 ; 岳夏薇 ; 孟江 ; 李淑萍 ; 王继刚
  • 英文作者:ZOU Jing-ye;YU Yong-zhi;GU Yong-pan;YUE Xia-wei;MENG Jiang;LI Shu-ping;WANG Ji-gang;Jiangsu Key Laboratory of Advanced Metallic Materials,School of Materials Science and Engineering,Southeast University;National Engineering Research Center for Domestic & Building Ceramics,Jingdezhen Ceramic Institute;Xizang Engineering Laboratory for Water Pollution Control and Ecological Remediation,Xizang Minzu University;
  • 关键词:微波合成 ; 类石墨烯氮化碳纳米片 ; 结构特征 ; 刚性
  • 英文关键词:microwave synthesis;;graphene-like carbon nitride nanosheet;;structural feature;;rigidity
  • 中文刊名:CLGC
  • 英文刊名:Journal of Materials Engineering
  • 机构:东南大学材料科学与工程学院江苏省先进金属材料重点实验室;景德镇陶瓷大学国家日用及建筑陶瓷工程技术研究中心;西藏民族大学西藏水污染控制与环境修复工程实验室;
  • 出版日期:2019-03-06 17:26
  • 出版单位:材料工程
  • 年:2019
  • 期:v.47;No.430
  • 基金:新世纪优秀人才支持计划(NCET-12-0119);; 西藏自然科学基金重点项目(2015ZR-14-14,XZ2017ZRG-66(Z));; 青年项目(XZ2017ZRG-49(Z))
  • 语种:中文;
  • 页:CLGC201903001
  • 页数:7
  • CN:03
  • ISSN:11-1800/TB
  • 分类号:5-11
摘要
以碳纤维为微波吸收剂,基于微波辐照法直接处理三聚氰胺,快速高效地合成类石墨烯结构的氮化碳纳米片。借助于场发射扫描电子显微镜、透射电子显微镜、原子力显微镜、X射线衍射和傅里叶变换红外光谱等分析手段,对微波合成产物进行表征。结果表明:与常规热缩聚合成的石墨相氮化碳相比,高能微波技术合成产物具有明显的纳米片特征,即成功地制备得到类石墨烯结构的氮化碳纳米片。同时,与超声剥离或氧化刻蚀得到的类石墨烯氮化碳纳米片相比,高能微波技术合成产物表面光滑平整,且可发现脆性断裂的现象,呈现出一定的刚性。
        Microwave synthesis has many advantages covering rapid, high-efficient, environmentally-friendly etc. Herein, graphene-like carbon nitride nanosheets(g-C_3N_4-NS) were successfully prepared by high-energy microwave heating method using melamine and carbon fibers as precursor and microwave absorber, respectively. The as-synthesized samples were investigated via various analytic techniques including X-ray diffraction(XRD), field-emission scanning electron microscope(FE-SEM), transmission electron microscopy(TEM), atomic force microscopy(AFM) and fourier transform infrared spectroscopy(FT-IR). Results show that the g-C_3N_4-NS sample prepared by microwave heating exhibits the obvious feature of graphene-like ultra-thin nanosheets in comparison with sample synthesized by conventional thermal polycondensation. Meanwhile, compared with graphene-like carbon nitride nanosheets prepared by other approaches including ultrasonic exfoliation and oxidation etching methods, the sample synthesized by microwave heating has smooth, flat and strong rigidity surface.
引文
[1] LEIBIG J. Uber einige Stickstoff-Verbindungen[J]. Annalen der Pharmacie,1834, 10(1): 1-47.
    [2] LIU A Y, COHEN M L. Prediction of new low compressibility solids [J]. Science,1989, 245(4920): 841-842.
    [3] TETER D M, HEMLEY R J. Low-compressibility carbon nitrides [J]. Science,1996, 271(5245): 53-55.
    [4] WANG Y, WANG X, ANTONIETTI M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry [J]. Angewandte Chemie International Edition,2012, 51(1): 68-89.
    [5] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine [J]. Langmuir,2009, 25(17): 10397-10401.
    [6] LU Q, DENG J, HOU Y, et al. One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid [J]. Chemical Communications, 2015, 51(61): 12251-12253.
    [7] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nature Materials, 2009, 8(1): 76-80.
    [8] HONG J, YIN S, PAN Y, et al. Porous carbon nitride nanosheets for enhanced photocatalytic activities [J]. Nanoscale, 2014, 6(24): 14984-14990.
    [9] ZHU K, WANG W, MENG A, et al. Mechanically exfoliated g-C3N4 thin nanosheets by ball milling as high performance photocatalysts [J]. RSC Advances,2015, 5(69): 56239-56243.
    [10] HUANG Z, LI F, CHEN B, et al. Nanoporous photocatalysts developed through heat-driven stacking of graphitic carbon nitride nanosheets [J]. RSC Advances, 2015, 5(18): 14027-14033.
    [11] XU J, ZHANG L, SHI R, et al. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis [J]. Journal of Materials Chemistry A, 2013, 1(46): 14766-14772.
    [12] WANG W, CHAKRABARTI S, CHEN Z, et al. A novel bottom-up solvothermal synthesis of carbon nanosheets [J]. Journal of Materials Chemistry A,2014, 2(7): 2390-2396.
    [13] CHENG N, JIANG P, LIU Q, et al. Graphitic carbon nitride nanosheets: one-step, high-yield synthesis and application for Cu2+ detection [J]. The Analyst,2014, 139(20): 5065-5068.
    [14] PATETE J M, PENG X, KOENIGSMANN C, et al. Viable methodologies for the synthesis of high-quality nanostructures [J]. Green Chemistry, 2011, 13(3): 482-519.
    [15] 高军. 微纳结构g-C3N4的制备与性能研究[D]. 南京:南京大学, 2012. GAO J. Research on synthesis of micro-nano structured g-C3N4 and their properties [D]. Nanjing: Nanjing University, 2012.
    [16] 裴昭君. 微波辅助制备石墨相碳化氮可见光催化降解罗丹明B的试验研究[D]. 成都:成都理工大学, 2014. PEI Z J. Study on photocatalytic degradation of rhodamine B with graphite carbon nitrogen under visible light [D]. Chengdu: Chengdu University of Technology, 2014.
    [17] YUAN Y, YIN L, CAO S, et al. Microwave-assisted heating synthesis: a general and rapid strategy for large-scale production of highly crystalline g-C3N4 with enhanced photocatalytic H2 production [J]. Green Chemistry, 2014, 16: 4663-4668.
    [18] WANG J G, LIU S, DING T, et al. Synthesis, characterization, and photoluminescence properties of bulk-quantity β-SiC/SiOx coaxial nanowires [J]. Materials Chemistry and Physics, 2012, 135: 1005-1011.
    [19] LIU S, WANG J G. Ultra-violet emission from one dimensional and micro-sized SiC obtained via microwave heating [J]. Materials Science in Semiconductor Processing, 2017, 72: 60-66.
    [20] YU Y Z, WANG J G. Direct microwave synthesis of graphitic C3N4 with improved visible-light photocatalytic activity [J]. Ceramics International,2016, 42(3): 4063-4071.
    [21] YU Y Z, ZHOU Q, WANG J. The ultra-rapid synthesis of 2D graphitic carbon nitride nanosheets via direct microwave heating for field emission [J]. Chemical Communications, 2016, 52(16): 3396-3399.
    [22] YU Y Z, WANG C, LUO L, et al. An environment-friendly route to synthesize pyramid-like g-C3N4 arrays for efficient degradation of rhodamine B under visible-light irradiation [J]. Chemical Engineering Journal,2018, 334: 1869-1877.
    [23] 梁庆华. 石墨相氮化碳的结构调控及增强光催化性能研究[D]. 北京:清华大学, 2016. LIANG Q H. Structural tuning of graphitic carbon nitrides with highly improved photocatalytic performance [D]. Beijing: Tsinghua University, 2016.
    [24] 吴星瞳. 石墨相氮化碳微纳米材料的制备及光催化性能研究[D]. 长春:吉林大学, 2015. WU X T. Studies on synthesis characterization and photocatal-ytic properties of graphitic carbon nitride and its composites [D]. Changchun: Jilin University, 2015.
    [25] NIU P, ZHANG L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities [J]. Advanced Functional Materials,2012, 22(22): 4763-4770.
    [26] MENENDEZ J A, JUAREZ-PEREZ E J, RUISANCHEZ E, et al. Ball lightning plasma and plasma arc formation during the microwave heating of carbons [J]. Carbon, 2011, 49(1): 346-349.
    [27] WANG J G, LIU S, HUANG S, et al. EBSD characterization the growth mechanism of SiC synthesized via direct microwave heating [J]. Materials Characterization, 2016, 114(3): 54-61.
    [28] KROKE E, SCHWARZ M, HORATH-BORDON E, et al. Tri-s-triazine derivatives part I from trichloro-tri-s-triazine to graphitic C3N4 structures[J]. New Journal of Chemistry, 2002, 26(5): 508-512.
    [29] 黄珊,王继刚,刘松,等. 高能微波辐照条件下SiC晶粒的生长过程分析[J]. 无机材料学报, 2014,29(2): 149-154. HUANG S, WANG J G, LIU S, et al. Growth process of SiC grains prepared by high-energy microwave irradiation [J]. Journal of Inorganic Materials, 2014,29(2): 149-154.
    [30] THOMAS A, FISCHER A, GOETTMANN F, et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts [J]. Journal of Materials Chemistry, 2008, 18(41): 4893-4908.
    [31] LI X, ZHANG J, CHEN X, et al. Condensed graphitic carbon nitride nanorods by nanoconfinement: Promotion of crystallinity on photocatalytic conversion [J]. Chemistry of Materials, 2011, 23(19): 4344-4348.
    [32] SONH X, YANG Q, JIANG X, et al. Porous graphitic carbon nitride nanosheets prepared under self-producing atmosphere for highly improved photocatalytic activity [J]. Applied Catalysis B: Environmental, 2017, 217: 322-330.
    [33] HONG Y, LI C, FANG Z, et al. Rational synthesis of ultrathin graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen evolution [J]. Carbon, 2017, 121: 463-471.
    [34] BOJDYS M J, MULLER J, ANTONIETTI M, et al. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride [J]. Chemistry-A European Journal, 2008, 14(27): 8177-8182.
    [35] YAN J, ZHOU C, LI P, et al. Nitrogen-rich graphitic carbon nitride: controllable nanosheet-like morphology, enhanced visible light absorption and superior photocatalytic performance [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2016, 508: 257-264.
    [36] MING L, YUE H, XU L, et al. Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity[J]. Journal of Materials Chemistry A,2014, 2(45): 19145-19149.
    [37] YANG S, GONG Y, ZHANG J, et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light[J]. Advanced Materials, 2013, 25(17): 2452-2456.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700